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Abstract

We look at the Jones polynomial, its construction, applications and generaliza-

tions. In particular, we study the braid groups, its representations and arrive at

a construction of the Jones polynomial. We discuss proofs of the Tait conjectures.

Then we construct Khovanov homology whose graded Euler characteristic is the Jones

polynomial.
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Chapter 1

Introduction

In knot theory, the study of invariants is of fundamental importance as they help in

detecting non-isotopic knots. An invariant i : L/(∼=) → E is a map from the set

of links (union of disjoint knots) under equivalence of isotopy to some set E. The

invariant i is said to be a complete invariant if it is injective. For a knot K, the knot

group π1(R3 −K) is known to be a complete invariant.

The object of this thesis to study the Jones polynomial VL(t), its applications and

generalization to Khovanov homology. For a pleasant ride, it is useful to adopt a

convenient set of notations and be consistent throughout. We denote Reidemeister

moves by R1,2,3. For instance, the bracket polynomial 〈·〉 is R2,3-invariant but gets

multiplied by A±3 under R1. A link L has planar projection or diagram D. We use

L and D interchangeably if there is no chance of confusion.

In chapter 2, we look at braid groups Bn and representations Bn → Aut(F n). One

may look at Bn as π1(UConfn(R2)), the fundamental group of the nth configuration

space (defined later) of R2, or define it purely algebraically by giving a presentation

〈S : R〉. The presentation has its advantage of an easy transition to braid represen-

tations. In particular, we study the Burau representation ψn : Bn → GLn(Z[t, t−1])

and its properties. We derive the Alexander polynomial from ψn, thereby giving the

earliest known polynomial invariant its deserved spot in our the study of VL(t). Then

we look at the Temperley-Lieb algebra and use to arrive at the bracket 〈·〉. As we

will see, 〈·〉 leads us directly to VL(t) rather easily.

In chapter 3, we define VL(t) using its own skein relation which we use to derive

some properties of VL(t). In general, VL(t) depends on the orientation of the com-

ponents of L. We will see how we can control this thereby equipping ourselves with

a variant of VL(t) which is independent of orientation. One may generalize VL(t) to

two two-variable polynomials known as the HOMFLYPT polynomial and the Kauff-

man polynomial. One of the greatest triumphs of VL(t), though, is in settling some

conjectures of classical knot theory and this deserves its own chapter—the next one!

In chapter 4, we prove the Tait conjectures, which concern reduced alternating

links. We make the proofs as general as we can. We use the state-sum model of 〈·〉
and VL(t) and their properties in the proofs. From these conjectures (now theorems),

we deduce several interesting corollaries concerning amphicheiral and links of even
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crossing number.

In chapter 5, we look at categorification and motivate it. We recall some concepts

from algebraic topology and category theory relevant to our study. We look at ho-

mology Hi(X;R) as a categorification of the Euler characteristic χ(X). The plan is

to construct a homology theory such that its graded Euler characteristic is the Jones

polynomial—this we discuss in the next chapter.

In chapter 6, we construct a (co)homology theory for links following Khovanov’s

[Kho00] and Bar Natan’s [BN02] approach. This (co)homology is a categorification of

VL(t) and gives us a strictly more powerful invariant than VL(t). Then we categorify

the bracket 〈·〉 following Oleg Viro’s [Vir04] approach.
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Chapter 2

Braid groups

2.1 The Artin braid group

Ambient isotopy gives an equivalence relation for n-braids. The Artin braid group Bn

is the group whose elements are equivalence classes of n-braids under the equivalence

of ambient isotopy and whose group operation is composition of braids.

Let X be a space and Xn be its product space with product topology. Define

(2.1) Confn(X) = {(x1, . . . , xn) | (xi 6= xj) for all i 6= j}.

This subspace Confn(X) of Xn is called the ordered nth configuration space of X.

An alternative formulation gives Confn(X) = {f | n → X is injective}, where n =

{1, . . . , n}. In other words, Confn(X) is the subspace made of ordered n-tuples of

distinct points in X.

Let Sn be the symmetric group. The unordered nth configuration space UConfn(X)

is defined as the quotient Confn(X)/Sn. That is, points in UConfn(X) are equivalence

classes of points in Confn(X) under the equivalence relation of permutation.

Theorem 2.1. The fundamental group of UConfn(R2) is the braid group Bn.

(2.2) Bn
∼= π1(UConfn(R2)).

As usual, let I be the unit interval. A path p : I → UConfn(R2) describes

trajectories of n particles in R2 except each particle moves in its own copy of R2. The

condition of distinctness of points in the definition of UConfn(R2) makes sure no two

particles meet (or rather, have the same coordinates in R2).

Let p(0) = {(0, 1), . . . , (0, n)} be the initial position of the particles (or one end

of each strand of the braid). One may let p(0) be the basepoint (the choice does not

matter since UConfn(R2) is connected). Let p(1) = {(1, 1), . . . , (1, n)} be the final

positions of the particles.

The homotopy of these paths corresponds to isotopy of braids. Each trajectory

describes a strand in the braid. One may connect the corresponding ends of strands in

pairs and form loops. Under the homotopy of loops, we have Bn = π1(UConfn(R2)).

Remark 2.2. The choice of the final position p(1) is only to facilitate our mental
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picture of a braid. One may define p(1) to be any other point on UConfn(R2).

Remark 2.3. The above arguments are incomplete and non-rigorous. However, they

should give an idea of the proof.

One may look at Bn purely algebraically guided by our mental picture of a braid.

Consider the n-braids σ1, . . . , σn−1, where σi is the n-braid in which the ith strand

crosses over the (i+ 1)the strand while every other strand runs parallel (that is, there

is no other double point or crossing). Impose the following relations:

σiσj = σjσi for i− j ≥ 2,(2.3)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2.(2.4)

Let R be the set of the above relations. Let S = {σ1, . . . , σn−1}.

Theorem 2.4. The group 〈S : R〉 is the braid group Bn.

Observe that the set of relations, R, give braid isotopies (ambient isotopy in R3

and planar isotopy in R2) and are called the braid relations.

Theorem 2.5. Let G be a group. Suppose s1, . . . , sn−1 ∈ G satisfy the braid relations

R. Then there is a unique homomorphism ψ : Bn → G such that ψ(σi) = si for all

1 ≤ i ≤ n− 1.

Proof. Let Fn be the free group generated by σ1, . . . , σn−1. By the universal property

of free groups, there is a unique homomorphism ψ′ : Fn → G such that ψ′(σi) = si

for all 1 ≤ i ≤ n − 1. This homomorphism induces the homomorphism ψ : Bn → G

provided the braid relations R are preserved. One easily checks that ψ(r) = ψ(r′) for

each braid relation r = r′.

The converse to the above theorem is obvious. Given a homomorphism ψ : Bn → G

such that ψ(σi) = si, one checks that {s1, . . . , sn−1} satisfy the braid relations R.

Let βn ∈ Bn be a braid (a more accurate description would be: βn is an equivalent

class of n-strand braids under isotopy). The closed braid βn is the link obtained by

connecting the corresponding ends in pairs.

Let us give an orientation to a braid β ∈ Bn: all strands are considered being

directed from top to bottom. Then the closed braid βn is an oriented link. Henceforth,

we adopt this orientation as a convention.

Theorem 2.6 (Alexander). Any oriented link diagram in R2 is isotopic to a closed

braid.

The original proof given by Alexander is straightforward but has some drawbacks.
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Nevertheless, we sketch the essence of the proof below. Recall that a polygonal link

is a geometric link whose components are closed broken lines.

The idea of the proof goes this way: Any link in R3 is ambient isotopic to a

polygonal link. Therefore, it suffices to prove that any oriented polygonal link L

is ambient isotopic to a closed braid. Let D be a polygonal oriented link diagram.

We choose a point P on the plane not lying on the D. This gives an axis l passing

through P perpendicular to the plane. Then we begin at any point on D and move

counterclockwise around the axis l. The plan is to have the link wind around the

axis in one direction (that is, counterclockwise). If the link begins to wind around

the axis incorrectly we throw the strand over the axis so that it keeps winding in the

right direction. Suppose AC is the edge in D that is winding around l in the incorrect

direction. Then we replace AC with two new edges AA′ and A′C. We keep doing

this for any edge in D that winds incorrectly. Since there are finitely many edges in

L, this process stops with all edges winding counterclockwise. Then we draw a radial

line from P intersecting the edges transversely at finitely many points. From this we

get a braid; the points of intersection give the endpoints of the braid.

Despite the simplicity and the straightforwardness of the proof, it is difficult and

impractical to write a computer program based upon it. We shall see a different proof

originally due to Yamada but improved later by Vogel. This proof has two major

advantages: (1) We can write an efficient computer program for putting knots or

links in closed braid form; (2) It has a beautiful corollary that reveals structure about

link diagrams.

We will use the book of Kassel-Turaev [KDT08] as our reference.

Definition 2.7. Smoothing all crossings of a given oriented link diagram D in the

standard orientation-preserving way yields a union of disjoint oriented loops (topolog-

ical circles). These circles are called Seifert circles of the diagram D.

The following diagram is how we smooth the crossings.

Definition 2.8. Any two disjoint oriented circles on the sphere S2 bound an annulus

in S2. These circles are said to be incompatible if their orientation is induced by an

orientation of this annulus. Otherwise, these circles are compatible.

Remark 2.9. Two oriented concentric cirles in R2 are compatible if they both are

oriented clockwise or both counterclockwise, and if they are not concentric in R2, they
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are only compatible when they have opposite orientations otherwise incompatible.

In the above, circles C1 and C2 are compatible to each other but incompatible to

C3.

Let nS(D) denote the number of Seifert circles of an oriented link diagram D. The

compatibility of Seifert circles is defined in the same way (above). Let ni(D) denote

the number of pairs of incompatible Seifert circles of D.

In the diagram D, forget the information of over/undercrossing. In other words,

each crossing becomes a vertex of degree 4. Denote this 4-valent digraph by DG. The

edges and faces of DG are defined the obvious way by considering DG as a planar

graph.

Remark 2.10. In general, DG may be disconnected and have self-loops. Thus, edges

of DG are either arcs or circles in R2.

Definition 2.11. A face f of DG is said to be adjacent to an edge e of DG if e forms

a part of the boundary of the closure of f . A face f is said to be adjacent to a Seifert

circle S of D if f is adjacent to at least one edge of D contained in S.

Definition 2.12. A face f of DG is said to be defect if there exist distinct edges e1, e2

of DG such that f is adjacent to both e1, e2, and the Seifert circles S1, S2 of D going

along e1, e2 are distinct and incompatible.

Definition 2.13. A reduction arc c ⊂ R2 in a face f of DG is an oriented arc leading

from a point on edge e1 to a point on edge e2 and lying (except the endpoints, of

course) in a face f of DG.

Definition 2.14. Let a1, a2 be two arcs belonging to two distinct incompatible Seifert

circles S1, S2. Suppose there is a reduction arc c from a point on a1 to a point on a2.

Then a Yamada-Vogel reducing move, denoted by Y (or Y+), is the pulling of the arc

a1 over the arc a2 along c creating two new double points (crossings).

Remark 2.15. Check that Y+ is a variant of R2. Let −c be the same arc c with

opposite orientation. Performing Y+ along −c yields a similar diagram except the arc

a2 is now above a1 at the crossings. The inverse of the move Y+ is denoted by Y−.

Obviously Y±1 does not change the isotopy class of an oriented link diagram.
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LetD′ be the diagram obtained from a oriented link diagramD by a single reducing

move Y+. Denote this process by D
Y+

−−→ D′.

Lemma 2.16. Let D and D′ be two oriented link diagrams in S2 such that D
Y+

−−→ D′.

Then nS(D′) = nS(D) and ni(D
′) = ni(D)− 1.

Proof. Suppose S1, S2 are two distinct and incompatible Seifert circles of D involved in

the reducing move Y+. We may draw two non-concentric circles S1, S2 with the same

orientation (say, counterclockwise). Recall that a reducing move Y+ is performed by

pulling an arc a1 of S1 over another arc a2 of S2 along a reducing arc c. By making

use of planar isotopy, we can make sure that no other Seifert circles of D is affected

by this move. Indeed, there is a planar region between arcs a1 and a2 where Y+ is

performed and in which no Seifert circles of D pass through. Suppose the reducing

move Y+ gives rise to two new Seifert circles S0 and S∞ of D′. Observe that all other

Seifert circles of D are left untouched. Thus, the first part of the lemma follows.

Let D1, D2 be the disjoint disks bounded by the Seifert circles S1, S2. Let di denote

the number of Seifert circles of D lying in the open disk D◦i = Di− ∂Di. Let d be the

number of Seifert circles of D lying in the annulus S2 − (D1 ∪D2) and incompatible

with S1. Let k be the number of pairs of incompatible Seifert circles of D both distinct

from S1, S2.

Claim 2.17. The number of pairs of incompatible Seifert circles of D is given by

ni(D) = k + d1 + d2 + 2d+ 1.

It suffices to show that the number of pairs of incompatible Seifert circles of D

including S1 or S2 or both is equal to d1 + d2 + 2d + 1. Observe that, for i = 1, 2,

an oriented circle in D◦i can only be incompatible with either S1 or S2, but not with

both. This gives the contribution d1 + d2. Next, observe that an oriented circle in

S2− (D1 ∪D2) is incompatible with S1 if and only if it is incompatible with S2. This

contributes 2d. Since S1 and S2 are incompatible, we add one.

Claim 2.18. The number of pairs of incompatible Seifert circles of D is given by

ni(D
′) = k + d1 + d2 + 2d.

A similar argument works for this one. Hence ni(D
′) = ni(D)− 1.

Remark 2.19. In the proof above, we drew two non-concentric circles S1, S2. One may

also check for concentric circles but is not really necessary.

Cutting S2 along the Seifert circles of D disintegrates S2 into a union of surfaces.

Each of these surfaces are taken to have a boundary (which is a Seifert circle of D).

Let Ω denote the union of these surfaces. See that Ω is a compact surface with

boundary.

For each crossing x of D, let γx denote a line segment near x joining the two Seifert
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circles involved in the crossing x. Observe that any two γx and γy are disjoint and

each γx lie in a connected component of Ω.

Lemma 2.20. Let ni(D) > 0. There exist a connected component F of Ω and two

Seifert circles in ∂F whose orientation is induced by an orientation on F .

Proof. Since ni(D) > 0, there is at least a pair of two incompatible Seifert circles of

D. Let S1, S2 be two such circles and c ⊂ R2 be an oriented arc from a point on S1 to

a point on S2. Assume that c meets each Seifert circle of D transversely in at most one

point. If c meets a Seifert circle in more than one point, we can adjust using planar

isotopy so that c meets it in only one point. See that the point of meetings of c with

these circles form a finite subset of c including the endpoints. As we move along c, see

that at each crossing the corresponding Seifert circle is directed either to the left or

to the right of c. Since S1, S2 are incompatible to begin with, their directions at the

endpoints of c must be opposite. We deduce that among the crossings of c with the

Seifert circles, there are two that lie consecutively and at which the directions of the

corresponding Seifert circles are opposite. It follows that the connected component

F of Ω containing the subarc of c between two such crossings satisfies the condition

given in the lemma.

Lemma 2.21. An oriented link diagram D in R2 has a defect face if and only if

ni(D) 6= 0.

Proof. The forward direction of the lemma is obvious from the definition of a defect

face. Therefore, we only prove that if ni(D) > 0, then D has a defect face. By the

previous lemma, we can consider a connected component F of Ω such that there are

at least two Seifert circles in ∂F whose orientation is induced by an orientation on

F . We fix such an orientation on F . We call a Seifert circle in ∂F positive if its

orientation is induced by the one on F and negative otherwise.

By assumption, there are at least two positive Seifert circles in ∂F . If F contains

no segments γx, then the interior F ◦ = F − ∂F is a face of DG adjacent to at least

two positive Seifert circles in ∂F . Hence this face is a defect face. Suppose F contains

certain segments γx. We remove all such segments from F and obtain a subsurface

F ′ ⊂ F . See that any connected component f of F ′ is adjacent to at least one segment

γx and the interior of f is a face of DG. See that each γx ⊂ F connects a positive

Seifert circle in ∂F with a negative one. Thus f is adjacent to at least one positive

and at least one negative Seifert circle.

If f is adjacent to at least two positive or to at least two negative Seifert circles,

then f is a defect face. Suppose each connected component f of F ′ is adjacent to
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exactly one positive and exactly one negative Seifert circle. Observe that if we move

from f to a neighboring component of F ′ across some γx ⊂ F , we only meet the same

Seifert circles. Since F is connected, we can move in this way from any component of

F ′ to any other component. Thus ∂F contains exactly one positive and one negative

Seifert circle, which contradicts our assumptions. It follows that D has a defect

face.

Lemma 2.22. Let D be a oriented link diagram with ni(D) = 0. Then D is isotopic

in the sphere S2 to a closed braid diagram.

Proof. If a connected component of Ω more than two boundary components, then two

of them must be incompatible in S2 so that ni(D) 6= 0. Since ni(D) = 0, we conclude

that each connected component of Ω has at most two components. Observe that a

compact and connected subsurface of S2 whose boundary has at most two components

must be either a disk or an annulus. Thus Ω contains only disks and annuli.

Next the Seifert circles of D can be transformed (using isotopy in S2) into a union

of disjoint concentric circles in R2. Using this isotopy in S2, one may assume from the

beginning that the Seifert circles of D are concentric circles in R2. Since ni(D) = 0,

these Seifert circles are oriented either all clockwise or all counterclockwise.

We assume all the Seifert circles are oriented counterclockwise. If they are ori-

ented clockwise, we may push all of them across infinity to obtain counterclockwise

orientation. By planar isotopy, we assume that the segments γx are all radial. The

resulting diagram is then a closed braid diagram and we are done.

Proof of Theorem 2.6. Let D be an oriented link diagram. If ni(D) = 0, we are done.

If ni(D) > 0, there is a defect face. Then we perform a Y+ on D to obtain D′ and

we have ni(D
′) = ni(D) − 1. Indeed, we have a sequence of isotopic oriented link

diagrams connected by Y+ moves:

(2.5) D
Y+

−−→ D′
Y+

−−→ · · · Y
+

−−→ D0,

where ni(D0) = 0. Then D0 is a closed braid diagram.

Remark 2.23. Observe that the length of any sequence of reducing moves Y+ required

to transform D to a closed braid is given by ni(D).

Definition 2.24. The braid index of a link L is the minimum number n such that

there exists a braid β ∈ Bn whose closure β represents L.

Corollary 2.25. The minimum number of Seifert circles in any diagram of a link K

is equal to the braid index of K.
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This follows from Lemma 2.16.

Notwithstanding that Alexander’s theorem guarantees that any oriented link can

be realized as a closed braid, it has no say on the uniqueness of the closed braid and

as such, it has little use in studying knots from braid groups. Markov’s theorem states

that any two closed braids expressing the same link are mutually related by successive

applications some special moves, which we describe below.

Let β ∈ Bn be a braid. A Markov move is defined to be any one of the following

types

1. Conjugation: the transformation β → αβα−1 or inverse, for any α ∈ Bn

2. The move β → βσ±1
n where β ∈ Bn and βσ±1

n ∈ Bn+1,

3. Isotopy in the braid group Bn (given by the braid relations).

Theorem 2.26 (Markov). Two braids have isotopic closures in R3 if and only if these

braids are related by a sequence of Markov moves.

The theorem can also be formulated in the following way:

Theorem 2.27 (Markov). Let β, β′ be two closed braids representing the same ori-

ented link L in R3. Then there exists a sequence of closed braids, each of them repre-

senting L,

β = β1 → β2 → · · · → βr = β′

such that each βi+1 is obtained from βi by a single Markov move.

A proof of this theorem can be found here [Tra98].

We say that two closed braids are Markov-equivalent or M-equivalent if they are

related by a sequence of Markov moves.

Markov’s theorem gives us a tool to construct invariants for knots and links. Here

we define Markov functions and show how link invariants can be constructed.

Definition 2.28. A Markov function with values in a set E is a sequence of set-

theoretic maps {fn : Bn → E}n≥1, satisfying the following conditions:

1. for all n ≥ 1 and all α, β ∈ Bn,

fn(αβ) = fn(βα);

2. for all n ≥ 1 and all β ∈ Bn,

fn(β) = fn+1(σnβ) and fn(β) = fn+1(σ−1
n β).

Theorem 2.29. Any Markov function {fn : Bn → E}n≥1 determines an E-valued

isotopy invariant f̂ of oriented links in R3.
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Proof. Let K be an oriented link in R3. Pick a braid β ∈ Bn whose closure is isotopic

to K and set f̂(K) = fn(β) ∈ E. Check that f̂(K) does not depend on the choice of

β. Indeed, if β′ ∈ Bn′ is another braid whose closure is ambient isotopic to K, then β

and β′ are M-equivalent (by Markov’s theorem). It can be seen from M-equivalence

and the definition of the Markov function that fn(β) = fn′(β
′). The function f̂ is

an isotopy invariant of oriented links: if K,K ′ are isotopic oriented links in R3 and

β ∈ Bn is a braid whose closure is isotopic to K, then the closure of β is also isotopic

to K ′ and f̂(K) = fn(β) = f̂(K ′).

2.2 The Burau representation

Let X be an object in a category A. An automorphism of X is an isomorphism from

X to itself. Automorphisms of X form a group, called the automorphism group of X

and denoted by Aut(X), whose operation is the composition of these isomorphisms.

Proposition/Definition 2.30. Let X be a finite-dimensional vector space. The

general linear group of X, denoted by GL(X), is the automorphism group Aut(X).

Suppose X is an n-dimensional R-vector space with a fixed basis. Then an auto-

morphism of X is an invertible linear transformation X → X which is defined by an

invertible matrix of order n× n. Then Aut(X) is the group of all invertible matrices

of order n × n with entries in R, which is the usual general linear group denoted by

GLn(R).

In representation theory, we represent groups as automorphisms of a vector space

X. Since an element of Aut(X) is an invertible matrix, we are essentially representing

a group as a set of invertible matrices, that is, mapping each element of a group to an

invertible matrix. One sees that this map should then be a homomorphism. Such rep-

resentations often reduces difficult group-theoretic problems to matrix manipulations,

which are easier.

Proposition/Definition 2.31. A representation of a group G on a vector space X

over a field K is a homomorphism from G to the automorphism group Aut(X) of

a vector space X, which is the general linear group GL(X). The vector space V is

called the representation space of G and the dimension of V is called the dimension

or degree of the representation.

More generally, one may define a group representation as a homomorphism from

that group to any other group.

Remark 2.32. In the discussion above, we have identified GL(X) with GLn(R). When
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X is an n-dimensional vector space with underlying field K with a chosen basis, we

usually identify GL(X) with GLn(K).

Before going further, we state group representation in category-theoretic terms.

Any group G can be seen as a category G with one object which is the group itself.

The elements of G are seen as the morphisms in G. Let A be an arbitrary category.

A representation of G in A is a functor from G to A taking G to some object X of A.

Then the functor takes the group elements of G to automorphisms of X establishing

a homomorphism G → Aut(X). In our case, A is FVectk, the category of finite

dimensional vector spaces over a field k.

Definition 2.33. A group representation ρ : G→ GL(X) is said to be faithful if ρ is

injective or equivalently, the kernel ker ρ is trivial.

Definition 2.34. Let ρ : G→ GL(X) be a group representation. A subspace Y ⊂ X

is said to be G-invariant if ρ(g)y ∈ Y for all g ∈ G, y ∈ Y . The restriction of ρ to Y

is called a subrepresentation. The trivial subspace {0} and X are trivial subrepresen-

tations. The representation ρ is said to be irreducible if all its subrepresentations are

trivial; otherwise it is reducible.

Equipped with this, we are ready to discuss the Burau representation of braid

groups. We shall use Theorem 2.5 to great effect. If s1, . . . , sn−1 are elements of a

group G satisfying the braid relations, then we have a braid representation ρ : Bn → G

such that ρ(σi) = si.

First, we describe the Burau representation using explicit matrices. Let Λ =

Z[t, t−1] be the ring of Laurent polynomials. Fix n ≥ 2. For i = 1, 2, . . . , n− 1, set

(2.6) Ui =


Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1

 ,

where Ii−1 is the identity (unit) matrix of order i − 1 and so on. Observe that each

Ui have three blocks Ii−1, U and In−i−1, where we have set

(2.7) U =

(
1− t t

1 0

)
.

By the Cayley-Hamilton theorem, the 2 × 2 matrix U over the ring Λ satisfies

U2 − tr(U)U + det(U)I2 = 0. Observe that the identity matrices also satisfy this

equation. Exploiting the block form the matrix Ui, we deduce that U2
i = tr(Ui)Ui +

det(Ui)In = 0 for all i. Rewriting this equation as Ui(Ui − (1 − t)In) = tIn, see that
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Ui is invertible over Λ. From here, one finds the inverse of Ui.

Proposition 2.35. The matrices U1, . . . , Un−1 satisfy the braid relations:

UiUj = UjUi for i− j ≥ 2,(2.8)

UiUi+1Ui = Ui+1UiUi+1 for 1 ≤ i ≤ n− 2.(2.9)

Exploiting the block form of Ui, one easily proves the proposition above. Since

the Ui satisfy the braid relations, we have a group homomorphism ψn : Bn → GLn(Λ)

satisfying ψn(σi) = Ui. This is the Burau representation of the braid group Bn.

Remark 2.36. In the above, we wrote GLn(Λ) to mean the group of invertible matrices

of order n × n over ring Λ. See that Λ is a commutative ring. Recall that by the

definition of group representation, we are looking at homorphism Bn → GL(X) except

in this case X is a Λ-module of rank n. The automorphisms of a Λ-module are given

by invertible matrices over Λ. Thus, it makes sense to identify GL(X) with GLn(Λ).

Remark 2.37. Observe that det(Ui) = −t for all i. This implies that for any β ∈ Bn, we

have detψn(β) = (−t)〈β〉, where 〈β〉 ∈ Z is the image of β under the homomorphism

Bn → Z sending the generators σ1, . . . , σn−1 to 1.

Remark 2.38. The Burau representations {ψn}n≥1 are compatible with the natural

inclusions ι : Bn ↪→ Bn+1: for any n ≥ 1 and β ∈ Bn,

(2.10) ψn+1(ι(β)) =

(
ψn(β) 0

0 1

)
.

For our study on the Burau representation, we use the textbook of Kassel-Turaev

?? as our reference.

Theorem 2.39. The Burau representation ψ is reducible for n ≥ 2.

Suppose ψ : Bn → GL(X) is the group representation where X is a Λ-module.

By definition, one should find a Bn-invariant subspace Y ⊂ X which is not a trivial

subrepresentation. But with a chosen basis, we have identified GL(X) with GLn(Λ).

Thus it suffices to find a homomorphism Bn → GLk(Λ) for some 1 ≤ k ≤ n− 1.

Indeed, this is what we will do. If we can find matrices V1, . . . , Vn−1 ∈ GLn−1(Λ)

that satisfy the braid relations, then we are done. For we define a homomorphism

Bn → GLn−1(Λ) sending σi  Vi. This homomorphism is then the reduced form of

ψn.
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For n ≥ 3, we define the following (n− 1)× (n− 1) matrices

V1 =


−t 0 0

1 1 0

0 0 In−3

 , Vi =



Ii−1 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−i−2


, Vn−1 =


In−3 0 0

0 1 1

0 0 −t

 ,

where 1 < i < n− 1,. Let C (we will also use the notation Cn if we want to stress the

dimension) be the n× n upper triangular binary matrix. In other words C = [cij]n×n

such that cij = 1 for all i ≤ j and cij = 0 otherwise.

Proposition 2.40. Let ∗i be the row of length n − 1 equal to 0 if i < n − 1 and to(
0 0 · · · 0 1

)
if i = n− 1. Then

(2.11) C−1UiC =

(
Vi 0

∗i 1

)
.

Proof. For i = 1, . . . , n− 1, we set

(2.12) V ′i =

(
Vi 0

∗i 1

)
.

Fix i and see that for any 1 ≤ k ≤ n, the kth column of UiC is the sum of the first

k columns of Ui. Indeed, one obtains UiC from C by replacing the (i, i)th entry by

1− t and replacing the (i+ 1, i)th entry by 1.

Similarly, observe that for any 1 ≤ l ≤ n, the lth row of CV ′i is the sum of the last

l rows of V ′i . One obtains CV ′i from C in the same way as above. Thus UiC = CV ′i .

The proposition follows.

Proposition 2.41. The matrices V1, . . . , Vn−1 satisfy the braid relations, and hence

defines a homomorphism Bn → GLn−1(Λ).

Since Ui satisfy the braid relations, it follows that C−1UiC also satisfy them. Using

the formula (2.11), one easily checks that Vi also satisfy the braid relations.

Since V1, . . . , Vn−1 ∈ GLn−1(Λ) satisfy the braid relations, we have the reduced

Burau representation for n ≥ 3, ψrn : Bn → GLn−1(Λ) sending σi  Vi.

For n = 2, define ψr2 : B2 → GL1(Λ) sending σ1 → (−t). This value is chosen

so that the formula (2.11) holds for n = 2. This formula implies that for any n ≥ 2

and any braid β ∈ Bn,

(2.13) C−1ψn(β)C =

(
ψrn(β) 0

∗β 1

)
,
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where ∗β is a row of length n− 1 over Z[t, t−1] depending on β. The following lemma

shows how to compute this row from the matrix ψrn(β).

Lemma 2.42. For i = 1, . . . , n− 1, let ai be the ith row of the matrix ψrn(β)− In−1.

Then

−(1 + t+ · · ·+ tn−1)∗β =
n−1∑
i=1

(1 + t+ · · ·+ ti)ai.

Proof. Identify the elements of the Λ-module Λn with row vectors of length n over

Λ. Observe that GLn(Λ) induces a right group action on Λn via multiplication of

rows by matrices. Set E = (1, t, t2, . . . , tn−1) ∈ Λn. A direct computation shows that

EUi = E for all i. Thus Eψn(β) = E. Set

F = EC = (1, 1 + t, 1 + t+ t2, . . . , 1 + t+ · · ·+ tn−1) ∈ Λn.

One easily checks that F satisfies

F

(
ψrn(β) 0

∗β 1

)
= ECC−1ψn(β)C = EC = F.

Subtracting FIn = F , it follows that

F

(
ψrn(β)− In−1

∗β

)
= 0.

This equality means that the linear combination of the rows ai of the matrix ψrn(β)−
In−1 with coefficients 1, 1 + t, 1 + t + t2, . . . , 1 + t + · · · + tn−2 is equal to −(1 + t +

· · ·+ tn−1)∗β.

Next we discuss the faithfulness of ψn for different values of n. The case of n = 1

is trivial since B1 is a trivial group. Thus ψ1 is faithful.

Proposition 2.43. The Burau representation ψ2 is faithful.

Proof. Note that B2
∼= Z. The only generator σ1 has the image U1 ∈ GL2(Λ). See that(

1 −1
)
U1 = −t

(
1 −1

)
from which it follows that

(
1 −1

)
Uk

1 = −tk
(

1 −1
)

for

all k ∈ Z and Uk
1 6= I2 for all k ∈ Z − {0}. Thus ker(ψ2) is trivial and consequently

ψ2 is faithful.

Theorem 2.44. The Burau representation ψ3 is faithful.

It is not known yet whether ψ4 is faithful or not. A proof of unfaithfulness for

n = 5 is found here [Big99]. A proof of unfaithfulness for n ≥ 6 is found here [LP93].

Recall that SL2(Z) is the group of invertible 2×2 matrices over Z with determinant

1. Let a1 = V1(t = −1) and a2 = V2(t = −1) be matrices in SL2(Z) obtained from V1

and V2 respectively by setting t = −1. Let ϕ : GL2(Z[t, t−1]) → SL2(Z) be a group
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morphism defined by ϕ(Vi) = ai for = 1, 2. Then we have the following composition

of group morphisms.

(2.14)

Bn

ψr
3−→ GL2(Z[t, t−1])

ϕ−→ SL2(Z)

σ1  V1 =

(
−t 0

1 1

)
 a1 =

(
1 0

1 1

)

σ2  V2 =

(
0 t

0 −t

)
 a1 =

(
1 −1

0 1

)
.

Proposition 2.45. Let S = {a1, a2} and R the set of relations given by a1a2a1 =

a2a1a2 and (a1a2a1)4 = 1. Then SL2(Z) is the group 〈S : R〉.

Proof of Theorem 2.44. The group morphism ϕ ◦ ψr3 is obviously surjective. See that

kerϕ ◦ ψr3 is normal and is generated by (σ1σ2σ1)4. As one can easily check, (σ1σ2σ1)4

is a central element in B3. Then kerϕ ◦ ψr3 is the cyclic group ((σ1σ2σ1)4) ⊂ B3. See

that kerψ3 ⊂ kerϕ ◦ ψr3.

By direct computation, one verifies that

V1V2V1

(
0 −t2

−t 0

)
, (V1V2V1)2 =

(
t3 0

0 t3

)
, (V1V2V1)4k =

(
t6k 0

0 t6k

)
.

For a nonzero k ∈ Z, see that ψr3((σ1σ2σ1)4k) = (V1V2V1)4k 6= I2. It follows that

kerψ3 = kerψr3 is trivial. This concludes the proof.

In the pages that follow, we demonstrate how we may construct invariants for

knots and links from representations of braid groups. Recall that we only need Markov

functions {fn : Bn → E}n≥1 as this determines an E-valued invariant of oriented links

in R3.

Let g : Λ→ Z[s, s−1] be the ring homomorphism g : t s2. For β ∈ Bn, define

fn(β) = (−1)n+1 s
−w(β)(s− s−1)

sn − s−n
g(det(ψrn(β)− In−1)),

where w(β) ∈ Z is the image of β under the homomorphism Bn → Z : σi  1.

For an oriented link L ∈ R3, set

f̂(L) = fn(β),

where β ∈ Bn is an arbitrary braid whose closure is isotopic to L.

Theorem 2.46. The polynomial f̂ is an invariant for oriented links in R3.

Proof. By Theorem 2.29, it suffices to show that the mappings {fn : Bn → Z[s, s−1]}n≥1

form a Markov function. Let β ∈ Bn be a braid. Check that conjugation of β in Bn

preserves both w(β) and det(ψrn(β) − In−1). It follows that conjugation preserves
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fn(β). Thus the first condition in the definition of a Markov function is checked.

Set β+ = βσn ∈ Bn+1. We now check that fn+1(β+) = fn(β). For n = 1, we have

β = 1, β+ = σ1, and f2(β+) = f2(σ1) = 1 = f1(β). Suppose that n ≥ 2. Observe that

s−w(β)

sn − s−n
=

sn−1−w(β)

1 + s2 + s4 + · · ·+ s2(n−1)

and

n− 1− w(β) = (n+ 1)− 1− w(β+).

It follows from the above equalities that the formula fn+1(β+) = fn(β) is equivalent

to the following formula:

(2.15) (1 + t+ · · ·+ tn−1) det(ψrn+1(β+)− In) = −(1 + t+ · · ·+ tn) det(ψrn(β)− In−1).

By (2.10) and (2.13), we have

ψn+1(ι(β)) =

(
ψn(β) 0

0 1

)
=

(
Cn 0

0 1

)
ψrn(β) 0 0

∗β 1 0

0 0 1


(
C−1
n 0

0 1

)
.

Again, using (2.13), we have(
ψrn+1(β+) 0

∗β+ 1

)
= C−1

n+1ψn+1(β+)Cn+1

= C−1
n+1ψn+1(ι(β))ψn+1(σn)Cn+1

= C−1
n+1

(
Cn 0

0 1

)
ψrn(β) 0 0

∗β 1 0

9 0 1


(
C−1
n 0

0 1

)
In−1 0 0

0 1− t t

0 1 0

Cn+1.

Observe that

C−1
n =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0

0 0 1 · · · 0 0

· · · ·
· · · ·
· · · ·
0 0 0 · · · 1 −1

0 0 0 · · · 0 1


A direct computation shows that

C−1
n+1

(
Cn 0

0 1

)
ψrn(β) 0 0

∗β 1 0

9 0 1

 =


ψrn(β) 0 0

∗β 1 −1

0 0 1


18



and

(
C−1
n 0

0 1

)
In−1 0 0

0 1− t t

0 1 0

Cn+1 =


In−2 0 0 0

0 1 t 0

0 0 1− t 1

0 0 1 1

 .

To multiply these two matrices we expand
ψrn(β) 0 0

∗β 1 −1

0 0 1

 =


X Y 0 0

Z T 0 0

P Q 1 −1

0 0 0 1

 ,

where X is a square matrix over Λ of size n−2, Y is a column over Λ of height n−2,

Z and P are rows over Λ of length n− 2, and T,Q ∈ Λ. The formulas above give

(
ψrn+1(β+) 0

∗β+ 1

)
=


X Y tY 0

Z T tT 0

P Q tQ− t 0

0 0 1 1

 .

Hence

ψrn+1(β+)− In =


X − In−2 Y tY

Z T − 1 tT

P Q tQ− t− 1

 .

To compute the determinant of this n× n matrix, we multiply the (n− 1)st column

by −t and add the result to the nth column. This gives

det(ψrn+1(β+)− In) = det(J),

where

J =


X − In−2 Y 0

Z T − 1 t

P Q −t− 1

 .

Observe that

ψrn(β)− In−1 =

(
X − In−2 Y

Z T − 1

)
and ∗β =

(
P Q

)
.

These formulas and Lemma 2.42 imply that adding the rows of J with coefficients

1, 1 + t, 1 + t+ t2, . . . , 1 + t+ · · ·+ tn−1,

we obtain a new bottom row whose first n − 1 entries are equal to 0. The last, nth
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entry is equal to

(1 + t+ · · ·+ tn−2)t+ (1 + t+ · · ·+ tn−1)(−t− 1) = −(1 + t+ · · ·+ tn).

Therefore,

(1+t+· · ·+tn−1) det(ψrn+1(β+)−In) = det


X − In−2 Y 0

Z T − 1 t

0 0 −(1 + t+ · · ·+ tn)

 .

This implies (6.9). It follows that

fn+1(σnι(β)) = fn+1(ι(β)σn) = fn+1(β+) = fn(β).

A similar argument shows that fn+1(σ−1
n ι(β)) = fn(β). This verifies the second con-

dition in the definition of a Markov function.

The polynomial f̂ defined above is called the Alexander-Conway polynomial. It is

a fundamental and historically the first polynomial invariant of oriented links in R3.

This polynomial extends to a two-variable polynomial invariant of oriented links in

R3, known as the Jones-Conway polynomial or HOMFLY-PT polynomial.

2.3 Temperley-Lieb algebra

Loosely speaking, a tangle is section of a knot or link. Consider a link L in S3 =

R3∪{∞}. The intersection of L and any 2-sphere S2 in R3 defines a tangle T . Observe

that the strings of T are either closed curves (hence homeomorphic to the circle S1)

or both of its ends are on the sphere S2. The ideas of ambient isotopy carry over

to tangles as well. For now we assume that the endpoints on S2 remained fixed and

isotopy means movement of the strings inside S2 only.

A tangle diagram is then a section of a link diagram in which the strings are either

closed curves or both of its endpoints are on a fixed circle S1. Of course, the ideas

of planar isotopy carry over to tangle diagrams except the endpoints remain fixed on

S1.

The moves R1,2,3 are still valid and define isotopy for tangles. Observe that there

are an even number of endpoints on S1 (each string contributing either 0 or 2). For

our purpose, we define tangle diagrams in a more restricted way. This is to facilitate

a construction of a very powerful oriented link invariant, which is the main object of

our study.

Recall how geometric braids are projected on the plane. Our tangle diagram is

drawn in a very similar way except the strings are allowed to loop backwards and

don’t necessarily have to move from one side to the other. Thus each string in our
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tangle diagram are either closed curves or has its endpoints on either of the sides.

By our rule, each string is allowed to have both its endpoints on one side. The only

restriction is then each side has equal number of endpoints. the following are some

possible tangle diagrams.

Remark 2.47. Any tangle diagram defined in this way (that is, the endpoints of strings

on sides) can be turned into the general tangle diagram where the endpoints are on a

circle. To see this, we simply connect the sides and expand it into a circle.

Let Λ = Z[A,A−1] be the ring of Laurent polynomials and TAn(δ) be a Λ-algebra

generated by ei for 1 ≤ i ≤ n satisfying the following relations

e2
i = δei

eiei±1ei = ei

eiej = ejei for |i− j| > 1.

(2.16)

The Λ-alegbra TLn(δ) is called a Temperley-Leib algebra.

Definition 2.48. Let R be a commutative ring and {γn : Bn → R}n≥2 a sequence of

functions such that the following conditions are satisfied.

1. For two equivalent braids α, β ∈ Bn (equivalence under braid relations and iso-

topy), γn(α) = γn(β);

2. If α, β ∈ Bn, then γn(β) = γn(αβα−1) or equivalently, γn(αβ) = γn(βα);

3. If β ∈ Bn, then there is a constant a ∈ R, independent of n, such that

γn+1(bσn) = aγn(b)

γn+1(bσ−1
n ) = a−1γn(b).

(2.17)

Then the sequence {γn} is called a Markov trace on {Bn}.

Let β = σ
ri1
i1
· · ·σrikik be a braid in Bn. The writhe of β, denoted by w(β), is

defined to be the sum of the exponents ri1 , . . . , rik . The Markov trace γn} can be used

to construct invariants for links. Indeed, compare this with the Markov function we

defined above.

Theorem 2.49. Let {γn} be a Markov trace on Bn. Let L be a link isotopic to a

closed braid β (Alexander’s theorem assures this). Set γ̂(L) = a−w(β)γn(β). Then γ̂

is an invariant for links.
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The proof is quite similar to the one we wrote in the case of Markov functions.

Observe that w(β) is invariant under conjugation and braid isotopy and is used to

cancel the effect of the second Markov move: β → βσ±1
n .

Define 〈·〉 : Bn → Z[A,A−1] such that the evaluation of 〈β〉 is done on β, the

closed braid. By Alexander’s theorem, we may reduce any given link L to an isotopic

closed braid β. Given a closed braid β, we may resolve all the crossings using the

following skein relation.

〈 〉
= A

〈 〉
+ A−1

〈 〉
α
∐

= (−A2 − A−2)β
(2.18)

A tangle is said be to reduced if there are no crossings and no additional loops.

Indeed, using the skein relation given above any tangle can be reduced (if it is not

already). Let Ui for 1 ≤ i ≤ n − 1 be the tangles described below. See that they

are tangles (just rotated by a right angle). Indeed, these Ui are the generators all

of reduced tangles, for one may write any reduced tangle as a composition of these

Ui. Note that we are drawing the tangles in a special way (in a way very similar to

geometric braid diagrams). The following relations are the abstraction of the isotopy

of tangles.

The bracket 〈·〉 is defined for braids and tangles (later, we will see the same bracket

extended to links). See that 〈σi〉 = A 〈1n〉 + A−1 〈Ui〉 where 1n is the tangle with n

parallel strands. Similarly
〈
σ−1
i

〉
= A−1 〈1n〉+A 〈Ui〉 from the skein relation. We may

omit 1n and write A 〈1n〉+ A−1 〈Ui〉 as A+ A−1 〈Ui〉.
Let An be an algebra over the ring Z[A,A−1] of Laurent polynomials generated by
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the generators Ui for i = 1, . . . , n− 1 and the following relations hold:

U2
i = (−A2 − A−2)Ui,

UiUi±1Ui = Ui,

UiUj = UjUi, if |i− j| > 1.

See that An is then the Temperley-Leib algebra TAn−1(−A2−A−2). Suppose U is

a reduced tangle. If we take the closure of U , we get an unlink of trivial crossing-less

components. Let ]U be the number of components in this unlink minus 1.

Proposition 2.50. The set {A + A−1 〈Ui〉} for all 1 ≤ i ≤ n − 1 satisfy the braid

relations.

Define a morphism ρn : Bn → An by

σi  A+ A−1Ui,

σ−1
i  A−1 + AUi.

The above proposition is equivalent to the following one.

Proposition 2.51. The map ρn : Bn → An is a representation of the braid group Bn.

Proof. It is easily checked that ρn preserves the braid relations. That is,

ρn(σi)ρn(σ−1
n ) = 1,

ρn(σiσi+1σi) = ρn(σi+1σiσi+1),

ρn(σiσj) = ρn(σjσi) if |i− j| > 1.

Indeed,

ρn(σi)ρn(σ−1
i ) = (A+ A−1Ui)(A

−1 + AUi)

= 1 + (A−2 + A2)Ui + U2
i

= 1 + (A−2 + A2)Ui + δUi

= 1 + (A−2 + A2)Ui + (−A−2 − A2)Ui

= 1,
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ρn(σiσi+1σi) = (A+ A−1Ui)(A+ A−1Ui+1)(A+ A−1Ui)

= (A2 + Ui+1 + Ui + A−2UiUi+1)(A+ A−1Ui)

= A3 + AUi+1 + AUi + A−1UiUi+1 + A−1U2
i + AUi + A−1Ui+1Ui + A−3UiUi+1Ui

= A3 + AUi+1 + (A−1δ + 2A)Ui + A−1(UiUi+1 + Ui+1Ui) + A−3Ui

= A3 + AUi+1 + (A−1(−A2 − A−2) + 2A+ A−3)Ui + A−1(UiUi+1 + Ui+1Ui)

= A3 + A(Ui+1 + Ui) + A−1(UiUi+1 + Ui+1Ui),

and as we can see, the final equation is symmetric in i and i+ 1, and finally

ρn(σiσj) = ρn(σi)ρn(σj)

= (A+ A−1Ui)(A+ A−1Uj)

= (A+ A−1Uj)(A+ A−1Ui)

= ρn(σjσi).

This completes our proof that ρn is a representation of the braid group.

Remark 2.52. In the discussion above, the Temperley-Leib algebra An was regarded

as a Λ-module. When we built the homomorphism ρn : Bn → An, we regarded An as

a group under multiplication.

The bracket polynomial (first introduced by Kauffman) is defined for knots and

links using the same skein relation. Although it is not a link invariant (it fails to

be invariant under the R1), we can normalize it so that it yields the famous Jones

polynomial.

We shall now derive the bracket polynomial from our representation ρn of the

braid group. Let β = σa1i1 · · ·σ
ak
ik
∈ Bn be some braid. Then

(2.19) ρn(β) =
k∏
t=1

(A+ A−1Uit)
at =

∑
s

〈β|s〉Us,

where 〈β|s〉 ∈ Z[A,A−1] is the coefficient of Us in the expansion of ρn(β).

Define 〈Us〉 = δ]Us and the bracket for the closed braid β̄ by

(2.20) 〈β̄〉 =
∑
s

〈β|t〉δ]Us .

Thus We have constructed a polynomial function for closed braids. This is the Kauff-

man bracket polynomial. As we can check, it fails to be invariant under Markov

moves.

The bracket of the braid may be normalized as

(2.21) 〈β̄〉 = (−A3)−w(β)
∑
s

〈β|t〉δ]Us .
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Given an oriented link L in R3 we define

(2.22) V (L) = 〈β̄〉,

where β is a braid whose closure is isotopic to L.

Theorem 2.53. The polynomial V is a link invariant.

Proof. Let L and L′ be two ambient isotopic links in R3. By Alexander’s theorem,

we can find two braids, β and β′ such that L (resp. L′) is isotopic to the closure of

β (resp. β′). By Markov’s theorem, β̄ and β′ are related by a sequence of Markov

moves. Therefore, it suffices to show that the normalized bracket 〈β̄〉 is invariant

under Markov moves.

1. For conjugation, we must check that 〈β̄〉 =
〈
αβα−1

〉
for some α ∈ Bn. It suffices

to check that ρn(β) = ρn(αβα−1). Since ρ is a homomorphism, it suffices to

check that ρn(β) = ρn(σiβσ
−1
i ). This can be checked by expansion:

ρn(σiβσ
−1
i ) = (A+ A−1Ui)ρn(β)(A−1 + AUi)

= (Aρn(β) + A−1Uiρn(β))(A−1 + AUi)

= ρn(β) + (A−2 + A2)Uiρn(β) + U2
i ρn(β)

= ρn(β) + (A−2 + A2)Uiρn(β) + (−A−2 − A2)Uiρn(β)

= ρn(β).

2. To show that the normalized bracket is invariant under β → βσn, we first

observe that w(βσn) = w(β) + 1. Then

〈βσn〉 = (−A3)w(β)+1(
∑
t

〈β|t〉δ||U ||)(A+ A−1〈Ui〉)

= 〈β̄〉(−A3(A+ A−1〈Un〉))

= 〈β̄〉(−A4 − A2〈Un〉)

= 〈β̄〉(−A4 − A2(−A2 − A−2))

= 〈β̄〉(−A4 + 1 + A4)

= 〈β〉.

3. Since ρn is a braid representation, the possibility of equivalence in the braid

group is also checked.

This completes our proof that V is an invariant for oriented links.
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Chapter 3

The Jones polynomial

The Jones polynomial VL(t1/2) is a function from the set of oriented links to the ring

Z[t1/2, t−1/2] of Laurent polynomials. Sometimes by abuse of notation we will write

VL(t) instead of VL(t1/2) as a shorthand for t = (t1/2)2. Keeping in mind that the

Jones polynomial is defined for oriented links L, we use the notations VL(t), VL, V (L)

to mean the same thing.

One characterizes VL(t) by giving the value 1 to any diagram of the unknot (in-

cluding the unknot diagrams with crossings) and satisfying the skein relation:

(3.1) t−1VL+(t)− tV (L−) = (t1/2 − t−1/2)V (L0),

where L+, L− and L0 are oriented links that differ only locally as shown in the

following diagram:

In some sources one finds the Jones polynomial defined in variable t1/4. This is

not necessary since it never really takes odd powers of t1/4. Thus we have defined VL

in variable t1/2.

Theorem 3.1. The Jones polynomial VL(t) is an invariant for oriented links.

One may attempt to prove the above theorem using invariance under R1,2,3. We

can also start with the definition Kauffman bracket and obtain the above skein rela-

tion.

Remark 3.2. Suppose we compute VL(t) for L+. By the above skein relation, we

replace V (L+) by V (L−) and V (L0). Thus we are not strictly reducing to lower

number of crossings since V (L+) and V (L−) has the same number of crossings.

Although the above skein relation works well for computational purposes, we will

use a different skein relation for the rest of our study. Let L be an link. We compute
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〈L〉 using the skein relation:〈 〉
= −A2 − A−2,〈

D
〉

= (−A2 − A−2) 〈D〉 ,〈 〉
= A

〈 〉
+ A−1

〈 〉
.

This polynomial 〈·〉 is called Kauffman bracket polynomial. Recall that we arrived at

the bracket polynomial using Temperley-Lieb algebra in the previous chapter.

Remark 3.3. Comparing the bracket skein relation with the skein relation we used

above for VL(t), we see that while VL(t) needs orientation the bracket is defined

without it.

Remark 3.4. Henceforth we will use the notations L and D interchangeably keeping

in mind that D is projection of L onto the plane. The author prefers using D and

working with planar projections but the Jones polynomial VL(t) is written using L in

most literature.

Proposition 3.5. The bracket polynomial 〈·〉 is characterized by the three bracket

skein relations and invariance under R2 and R3.

Indeed, one may write down a general skein relation as the following:〈 〉
= δ,

〈
D
〉

= δ 〈D〉 ,
〈 〉

= A
〈 〉

+B
〈 〉

.

The standard unknot (with no crossing) is associated with the value δ. Our desire

to make 〈·〉 invariant under R2 and R3 forces B = A−1.

For an oriented link diagram, its crossing has a sign. A positive crossing (+1)

is the one associated with that crossing L+ (in the skein relation above). Then a

negative crossing (−1) is the one associated with L− in that diagram. The writhe of

the oriented link diagram, denoted by w(D), is sum of the signs of all its crossings.

Remark 3.6. Adding or removing a kink (R1) changes the bracket by a factor of −A±3.

This move also changes the writhe by ±1.

Theorem 3.7. The polynomial p(D,A) = (−A)−3w(D) 〈D〉 is an oriented link invari-

ant.

By the above remark, the truth of the above theorem is easily established. Indeed

one gets VL(t) from pD(A) by putting A = t−1/4. This model of the Jones polynomial

using the bracket has some advantages which we will utilize in the pages that follow.

Remark 3.8. Since VL(t) has only powers of t±1/2, it follows that p(D,A) has only

powers of A±2.
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Let D be an oriented link diagram. Using the bracket skein relation, we resolve

all the crossings one by one. Each crossing can be resolved in two ways, one that gets

multiplied by A in the skein relation (we call this A-smoothing or A-splitting) and

other one that gets multiplied by A−1 (we call this B-smoothing or B-splitting). A

glance at the general skein relation reveals why we have chosen to call it B-smoothing

rather than A−1-smoothing.

A state S is a map from the set of crossings of D to the set {A,B}. If D has

n crossings, then there are 2n states. These are all the possible ways to resolve the

crossings. Let S(D) denote the set of all states (later, we will turn S(D) into a

category). For a state S, denote by a(S) and b(S), the number of A-smoothings and

B-smoothings respectively in S. Put σ(S) = a(S) − b(S). Once we resolve all the

crossings, we end up with a bunch of topological circles. For a state S, we denote the

number of circles by ]S.

Theorem 3.9. The bracket polynomial can be written as the following sum:

(3.2) 〈D〉 =
∑

S∈S(D)

Aσ(S)(−A2 − A−2)]S−1.

This theorem follows from the bracket skein relations. A state S has ]S circles,

hence 〈S〉 = (−A2 − A−2)]S−1. Each A-smoothing gets multiplied by A and each B-

smoothing gets multiplied by A−1. Thus each state S contributes Aσ(S)(−A2 − A−2)

to the sum where σ = a(S)− b(S). This proves the theorem.

Let us call this the state-sum model of 〈·〉. We will make great use of it in proving

propositions and theorems. See that the Jones polynomial p(D,A) also admits a

similar state-sum model. We list this result as a theorem due to its importance in the

work that will follow.

Theorem 3.10. The Jones polynomial p(D,A) can be written as the following sum:

(3.3) p(D,A) = (−1)−3w(D)
∑

S∈S(D)

Aσ(S)−3w(D)(−A2 − A−2)]S−1.

In our definition, we have normalized 〈 〉 = 1. By applying the second skein

relation, we must have 〈∅〉 = 1/(−A2−A−2) for the empty link ∅. This is not a Laurent

polynomial and does not look elegant. Thus we may normalize 〈 〉 = −A2 −A−2 so

that 〈∅〉 = 1. We make no changes to the second and third skein relation. Thus the

normalization preserves its invariance under R2 and R3. We will call this unreduced

bracket polynomial and denote it by 〈̂·〉. The same normalization applied to the Jones

polynomial yields the unreduced Jones polynomial denoted by p̂(L,A).

One may normalize by giving 〈 〉 other values. One can introduce variable
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changes as well. For instance, substituting A = t−1/4 in p(L,A) yielded VL(t). Later

when we study Khovanov homology we will substitute q = −A−2 and work with ĴL(q).

Indeed one uses different normalizations and variable changes for different purposes

and it may become difficult to know which one is which. For our work, we will use

ĴL(q) (introduced later) for Khovanov homology, p(L,A) when we want to exploit the

state-sum model (starting next chapter) and VL(t) for other purposes.

For an oriented link L, one obtains its mirror-image, denoted by L, by applying

→ or → (whichever applicable) to each of the crossings. A link is said

to be amphicheiral (or acheiral) if it is ambient isotopic to its mirror image. A chiral

link is one which is not amphicheiral. The simplest chiral knot is the trefoil since 31

and 32 are mirror images and 31 � 32. The Jones polynomial is useful in detecting

chirality.

Theorem 3.11. Let L be an oriented link and L its mirror-image. Then

(3.4) VL(t) = VL(t−1), p(D,A) = p(D,A−1).

Proof. Since the two equations are equivalent, we will establish only p(D,A) =

p(D,A−1). In taking mirror-image, we apply → or → . This re-

verses the sign of all the crossings. Thus w(D) = −w(D). From the skein relation

〈 〉 = A 〈 〉+ A−1 〈 〉, one sees that the bracket
〈
D
〉

is just 〈D〉 with A and A−1

exchanged. By Theorem 3.7, it follows that p(D,A) = p(D,A−1).

Corollary 3.12. Let K be a knot. If the Jones polynomial VK(t) is not symmetrical

under the exchange t↔ t−1 or equivalently, VK(t) 6= VK(t−1), then K is chiral.

The truth is obvious since VK(t) is an invariant. Thus we have found the first

major use of VL(t). One may quickly verify that V31(t) 6= V31(t
−1).

Remark 3.13. The converse of the above corollary is not true and hence this method

cannot detect all the chiral knots. There exist chiral knots K with VK(t) = VK(t−1).

Note that not all polynomial invariants can detect chirality. The Alexander poly-

nomial cannot detect chirality.

Remark 3.14. In Theorem 3.11, we considered oriented link L while in Corollary 3.12,

we considered knot K. The reason will become evident from the next few results.

Proposition 3.15. The Jones polynomial VK(t) of a knot K is independent of ori-

entation.

Proof. By the Jones skein relation (3.1), reversing the orientation of a knot leaves L+

and L− unchanged (signs of crossings are preserved). The result follows.
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Remark 3.16. By the same logic, reversing the orientation of all the components of a

link L also leaves VL(t) unchanged.

In general, changing orientation of some (but not all) components of a link L may

change VL(t). A simple example is the Hopf link. In the following is a brilliant result

that says that changing orientation of some components of a link multiplies VL(t) by

some power of t. Before that we need a definition. Let L be an oriented n-component

link with components labelled Li for 1 ≤ i ≤ n. The linking number lk(Li, Lj) is

half of the sum of signs of crossings where a segment of Li crosses Lj. These signs

(+1 or −1) follow the same convention as the writhe. Given an oriented link diagram

with n components, there are such
(
n
2

)
linking numbers corresponding to each pair of

components.

Proposition 3.17. The linking number is an invariant.

Proof. The move R1 affects only one component of a diagram and can, thus, be ruled

out. The move R2 introduces or deletes two crossings with opposite sign which does

not affect lk(Li, Lj). Similarly R3 also leaves lk(Li, Lj) unchanged.

For a link L, we write L =
∐n Li to specify that L is an n-component link with

each component labelled Li. We may write simply L =
∐
Li if n is unimportant

or unknown. For greater generality, we extend this notation and write L = M
∐
N

where M and N are possibly links themselves. We write rN to denote the same link

N but orientation of each component reversed.

We extend the definition of linking number as well. For oriented links M and

N , define lk(M,N) =
∑

i,j lk(M i, N j), where the sum is over all possible pairs of

components of M and N .

Theorem 3.18. Let L = M
∐
N be an oriented link. Let L′ = M

∐
rN be the link

obtained by reversing the orientation of all the components of N . Let λ = lk(M,N).

Then

(3.5) VL′(t) = t−3λVL(t).

Proof. Recall that VL(t) = p(L,A) = (−A)−3w(L) 〈L〉 and 〈·〉 is invariant underR2 and

R3. Clearly 〈L〉 is unaffected by change in orientation in any number of components

of L. Thus only the writhe is changed. See that changes in crossing sign happen only

at the sites where some M i meets some N i. Observe that lk(M,N) involves the same

crossings. We denote a crossing between M i and N i by x(M i, N j). We denote its sign

by sgn(x(M i, N j)). Since writhe decreases by 2 when a positive crossing changes to a

negative crossing and increases by 2 when a negative crossing changes to a positive,
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it follows that

(3.6) w(L′) = w(L)− 2
∑
i,j,x

sgn(x(Mi, Nj)) = w(L)− 4lk(M,N).

From the above equation, it follows that

(3.7) (−A)−3w(L) = (−A)−3w(L′)(−A)−12·lk(M,N).

Substituting A−4 = t and λ = lk(M,N), we have VL′(t) = t−3λVL(t).

Notwithstanding that VL(t) depends on the orientation of some of the components

of L, Theorem 3.18 equips us with a tool to control this dependence. Indeed, one may

define a variant of the Jones polynomial which does not depend on the orientation.

The construction is obvious and straightforward.

Define self-writhe of a link L as ŵ(L) = w(L) − 2
∑

i,j lk(Li, Lj). Alternatively,

ŵ(L) =
∑

iw(Ki), where Ki is Li considered as a knot (that is, ignoring every

other component Lj where i 6= j). Obviously ŵ(L) is R2,3-invariant and gets mul-

tiplied by A±1 under R1 in the way w(L). Clearly ŵ(D) is independent of ori-

entation (by the same argument used in the proof of Proposition 3.15). Define

f(L,A) = (−A)−3ŵ(L) 〈L〉 and then put A = t−1/4 to define V ′L(t). The Jones polyno-

mial V ′L(t) is then defined and is an invariant for unoriented links.

There are two two-variable polynomial invariants that generalize VL(t). They

are the HOMFLY (or HOMFLYPT) polynomial and the Kauffman polynomial. The

HOMFLY polynomial is defined (indeed, well-defined) by the following theorem.

Theorem/Definition 3.19. There exists a unique map P from L/(∼=), the set of

oriented links under equivalence of ambient isotopy, to Z[l±,m±] such that P ( ) = 0

and

(3.8) lP (L+) + l−1P (L−) +mP (L0) = 0,

where L+, L− and L0 differ only locally at the points indicated below.

The polynomial P is called the HOMFLY polynomial. The proof for existence

and uniqueness relies on induction on the number of crossings [Lic97]. The HOMPLY

polynomial may well be regarded as polynomial in three variables x, y, z hence belong-

ing to the ring Z[x±, y±, z±] with the skein relation xP (L+) + yP (L−) + zP (L0) = 0.

31



Remark 3.20. The condition P ( ) = 0 applies to all knots isotopic to . Indeed,

this is already implied in the definition since the domain of P is L/(∼=).

Theorem 3.21. There exists a unique map Θ from the set of unoriented links to

Z[a±, z±] such that

1. Normalization: Θ( ) = 0 (the crossing-less unknot);

2. Invariance: Θ(·) is R2,3-invariant;

3. Effect under R1: Θ(sr) = aΘ(s), Θ(sl) = a−1Θ(s);

4. Skein relation:

(3.9) Θ( ) + Θ( ) = zΘ( ) + zΘ( ),

where s is an arc and sr (resp. sl) is the same arc with a right-handed (resp. left-

handed) curl added (R1).

Definition 3.22. The Kauffman polynomial is a map from the set of unoriented links

to Z[a±, z±] defined by K(L) = a−w(L)Θ(L), where ŵ(L) is the self-writhe of L.

Remark 3.23. The writhe w(D) in the definition may be replaced by ŵ(D) since both

are R2,3-invariant and a−w(L)Θ(L) is an invariant for unoriented links as well. Indeed,

using ŵ(L) would have been a better choice since it does not require computation of

lk(Li, Lj) but the use of w(L) is standard and well-established.

The new polynomials P (L) and K(L) share several of the properties we derived

for VL(t).

Remark 3.24. As we have seen in this chapter and will see in the subsequent chapters,

some problems are easier solved using p(L,A) while others are easier with VL(t).
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Chapter 4

Proofs of the Tait conjectures

4.1 The first Tait conjecture

As mentioned earlier, one of the major triumphs of the Jones polynomial is in resolving

some old conjectures in classical knot theory. Tait was a physicist and one of the

earliest knot theorists and as such, his work was quite non-rigorous. He made a

number of assumptions or conjectures while tabulating knots according to crossing

number. These conjectures were open for several decades until they were proven to

be true for special cases (i.e., alternating knots) using the Jones polynomial.

Let D be a knot (link) diagram. Give it an orientation. Pick any point p ∈ D

lying on the diagram. Traverse, starting at p, on the diagram until we reach p again.

If the crossings alternate between and , we say S is an alternating diagram. An

alternating link is one that has an alternating diagram.

An isthmus is simply a nugatory crossing can be removed by using a variant of

R1 (shown in the figure).

An alternating diagram is said to be reduced if there is no isthmus. The Tait

conjectures are only true for the case of reduced alternating diagrams.

Different authors may give different formulations of the conjectures but the main

conjectures are listed below.

Conjecture 4.1. Any reduced alternating diagram of a link has the fewest possible

crossings.

Conjecture 4.2. The writhe is an invariant for reduced alternating link diagrams.

Conjecture 4.3 (The Flyping conjecture). Any two reduced alternating diagrams of

an oriented, prime alternating link are related by a finite sequence of flyping moves.
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The following additional conjecture is also sometimes listed. It follows from the

second conjecture.

Conjecture 4.4. Amphicheiral alternating knots have even crossing number.

We use the Jones polynomial to prove these conjectures except the flyping con-

jecture. Many other interesting corollaries can be deduced from these conjectures

(theorems) and their proofs. We use the state-summation model of the bracket poly-

nomial for the proofs.

Let D be an unoriented link diagram. Recall that each crossing x(D) may be

resolved in two ways:
A−→ or

B−→ according to which smoothing gets

coefficient A or B = A−1 in the bracket skein relation. A state S(D) of D is what

we get after giving each crossing of D a smoothing of either A or B. A state S(D)

is a union of disjoint circles. The number of connected components (circles) in state

S(D) is denoted by ]S(D).

Let SA(D) denote the state in which every crossing has A-smoothing. Likewise,

SB(D) denotes the state in which every crossing has B-smoothing.

We will use the textbook of Lickorish [Lic97] as our reference.

Definition 4.5. Let S1B(D) be a state in which exactly one crossing has B-smoothing.

Similarly, let S1A(D) be a state in which exactly one crossing has A-smoothing. Then

D is said to be plus-adequate if ]SA(D) > ]S1B(D) and minus-adequate if ]SB(D) >

]S1A(D). The link diagram D is said to be adequate if it is both plus-adequate and

minus-adequate.

Proposition 4.6. A link diagram D is plus-adequate if no connected component in

SA(D) crosses itself in the original diagram (before smoothing).

This may be easily checked. Indeed, one checks the only way ]SAD ≤ ]S1BD can

hold is the following case:

Thus, if no connected component in SAD crosses itself in the original diagram, D

is plus-adequate. A similar proposition holds for minus-adequacy.

Lemma 4.7. Reduced alternating diagrams are adequate.

Before we prove this, see that the following diagram represents a way to look at

smoothing. We may put the labels A and B near the crossings in that manner. In

34



A-smoothing, the regions with label A are connected and in B-smoothing, the regions

with label B are connected after the smoothing.

Proof of Lemma 4.7. Given any diagram D, we label all the crossings this way. Let

DG be the graph associated with D when we forget the over-crossing and under-

crossing data, that is, → and → . Since D is alternating, all the faces

of DG have the same labels. Further, this gives a chessboard coloring in which each

face is colored either A or B depending on the label. Observe that the circles in SAD

are the boundaries of the regions colored in either A or B. Since there are no isthmi,

no connected component in SAD crosses itself in the original diagram. Thus D is

plus-adequate. The case of minus-adequacy follows similarly.

We use the term span of a polynomial to denote the difference of the highest

exponent and lowest exponent in the polynomial, that is, span(P (x)) = max(P (x))−
min(P (x)), where max() and min() denote the highest and lowest exponents in P (x).

Proposition 4.8. The span of the bracket 〈·〉 is a link invariant.

Proof. The bracket 〈·〉 is an R2,3-invariant. It changes by a factor of A±3 under R1

which does not change the span.

Lemma 4.9. The bracket 〈·〉 satisfies the following inequality

max〈D〉 ≤ n+ 2(]SA − 1),

where the equality holds when D is plus-adequate.

Proof. Let S be the union of all 2n states of a link diagram D. The state-summation

of bracket polynomial can be written as

〈D〉 =
S∈S∑
S

Aa(S)−b(S)(−A2 − A−2)]S−1,

where a(S), b(S) and ]S denote the number of A-smoothings, B-smoothings and con-

nected components in the state S. Each state contributes Aa(S)−b(S)(−A2 −A−2)]S−1

to the sum. Consider the state SA where all crossings have A-smoothings, that is,

a(S) = n and b(S) = 0. The highest exponent in the contribution from state SA is

then n+ 2(]SA − 1).

Suppose S2 is a state obtained from S1 by changing exactly one of theA-smoothings

in S1 (if any) to a B-smoothing. State S1 contributes a highest exponent of a(S1)−
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b(S1)+2(]S1−1) while S2 contributes a highest exponent of a(S1)−b(S1)−2+2(]S2−1)

since there is one more B-smoothing and one less A-smoothing. But ]S2 = ]S1 ± 1

as we may either create a new loop or merge two loops into one. Thus, the highest

exponent either drops by 4 or remains the same while going from S1 to S2. This

means that the highest exponent can never go up while changing A-smoothings to

B-smoothings.

In general, there could be multiple terms with exponent n+2(]SA−1). These terms

may cancel each other such that the maximum exponent in the bracket polynomial

may be strictly less than n+ 2(]SA − 1), hence the inequality.

Note, however, that if D is plus-adequate, then ]SA = ]S1B − 1, so there is only

one term with that exponent and hence we have a strict maximum.

Lemma 4.10. The bracket 〈·〉 satisfies the following inequality

min〈D〉 ≥ −n− 2(]SB − 1),

where the equality holds when D is minus-adequate.

Proof. We proceed exactly the same way as the proof above.

Lemma 4.11. For a link diagram D of n crossings, we have ]SA + ]SB ≤ n+ 2. The

equality holds when D is adequate.

Proof. We use induction on n. It is obviously true when n = 0. Suppose it is

true for n − 1 crossings. Choose a crossing of D. Out of the two possible ways of

smoothing this crossing, at least one of them yields a connected diagram D′. Without

loss of generality, suppose this is an A-smoothing. Then ]SA(D) = ]SA(D′) and

]SB(D) = ]SB(D′)± 1. By induction hypothesis, we have

]SA(D) + ]SB(D) = ]SA(D′) + ]SB(D′)± 1 ≤ (n− 1) + 2± 1 ≤ n+ 2.

For the case of adequacy, we have ]SA(D) = ]SA(D′) and ]SB(D) = ]SB(D′) + 1,

hence the equality.

Lemma 4.12. For a link diagram D of n crossings, the span of its bracket 〈·〉 satisfies

the inequality span〈D〉 ≤ 4n. The equality holds when D is adequate.

Proof. Using the inequalities from Lemmas 4.9 and 4.10, we get span〈D〉 ≤ 2n +

2(]SA + ]SB − 2). Using the inequality from Lemma 4.11, we get span〈D〉 ≤ 4n. If

D is adequate, all the inequalities become equalities, and we have span〈D〉 = 4n.

Lemma 4.13. Any two reduced alternating diagrams of isotopic links have the same

number of crossings.
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Proof. Since a reduced alternating diagram is adequate, we have span〈D〉 = 4n. But

the span is invariant, therefore, any other reduced alternating diagram isotopic to D

also has n crossings.

Proof of the first Tait conjecture. This is clear from Lemma 4.12. Since the span of

the bracket polynomial is invariant, we must have n ≤ n′, where n is the number of

crossings in a reduced alternating diagram and n′ is the number of crossings in any

other diagram of the same (isotopic) link.

The crossing number of a link is the minimal number of crossings in any diagram of

that link. It is clear that the number of crossings in any reduced alternating diagram

gives the crossing number of that link.

4.2 The second Tait conjecture

One must be careful in computing writhe of an oriented link diagram. Let D be an

oriented link diagram. In general, D has multiple components. As usual, we use Di

to denote the ith component. The writhe of Di is defined to be the sum of all the

signs of the crossings of Di only, that is, we regard Di as a knot diagram and ignore

all other components of D.

The writhe of the oriented link diagram D is defined to be the sum of the writhes

w(Di) of its components and linking numbers lk(Di, Dj). That is,

w(D) =
∑
i

w(Di) +
∑
i<j

lk(Di, Dj).

Given any link diagram D, we can replace each segment by r parallel copies of

itself while preserving the information of crossings. Denote the resulting diagram by

Dr. A particular example is given below.

Observe that n crossings in D corresponds to nr2 crossings in Dr. Further if S(Dr)

is the state of Dr corresponding to state S(D) of D, then ]S(Dr) = r]S(D) as seen

from the picture below. That is, each loop in any state of D corresponds to r parallel

loops in the corresponding state of Dr.

Proposition 4.14. If D is plus-adequate, Dr is also plus-adequate. The same is true

for minus-adequacy and hence adequacy.
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Proof. The observation above takes this clear. If D is plus-adequate, then no con-

nected component in SA(D) crosses itself in the original diagram (before smoothing).

The same is true for SA(Dr) as well since each connected component in SA(Dr) is sim-

ply a parallel of some connected component in SA(D). Similarly for minus-adequacy

and adequacy.

In general, if D is a knot diagram, then Dr becomes a link diagram.

Lemma 4.15. Let Dα be a plus-adequate oriented link diagram with nα crossings.

Let Dβ be any other oriented link diagram with nβ crossings, which is planar isotopic

to Dα. Then

nα − w(Dα) ≤ nβ − w(Dβ).

Equivalently, the quantity nα − w(Dα) attains least possible value when Dα is plus-

adequate.

Proof. Let Dα and Dβ be two isotopic oriented link diagrams such that Dα is plus-

adequate. Suppose Di
β is the component corresponding to Di

α in this isotopy. In

general, Di
α and Dj

β may have different writhes but there exist non-negative integers

pi and qi such that w(Di
α) + pi = w(Di

β) + qi. We can add a tiny positive kink (a

variant of R1) somewhere in Di
α; this twist has to be so tiny that it does not affect

any other section of Dα. Indeed, we add pi twists in Di
α and qi twists in Dβ and do

this for all the components of the links. The resulting link diagrams are denoted by

D]
α and D]

β. It follows that

w(D]
α) =

∑
i

w(Di
α) +

∑
i

pi +
∑
i<j

lk(Di
α, D

i
α),

w(D]
β) =

∑
i

w(Di
β) +

∑
i

qi +
∑
i<j

lk(Di
β, D

i
β).

The linking numbers are invariant, while w(Di
α) + pi = w(Di

β) + qi for each i. It

follows that w(D]
α) = w(D]

β). Now consider D]r
α and D]r

β .

It is obvious that D]r
α and D]r

β have the same writhe and are planar isotopic. After

all, D]
α is obtained from Dα through R1 and D]r

α is obtained from D]
α by replacing

the segments with parallel segments. As such, D]r
α and D]r

β have the same Jones

polynomial VL(t). Since they have the same writhe, it follows that 〈D]r
α 〉 = 〈D]r

β 〉.
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See that D]
α and D]

β have nα +
∑

i pi and nβ +
∑

i qi crossings respectively since

each twist adds one crossing. It follows that, by an observation above, D]r
α and D]r

β

have r2(nα +
∑

i pi) and r2(nα +
∑

i pi) crossings respectively.

Let ]SA,α denote the number of connected components in the state SA,α of Dα

where all crossings receive A-smoothing. This corresponds to ]SA,α+
∑

i pi connected

components in D]
α since each twist adds a new loop, and (]SA,α +

∑
i pi)r connected

components in D]r
α . Similarly, there will be (]SA,β +

∑
i qi)r connected components

in the state of D]r
β where all crossings receive A-smoothing.

Observe that the tiny twists we added to make writhes equal preserves adequacy.

This is because the twists only introduce extra loops which do not cross itself in the

original diagram. In particular, D]
α is plus-adequate. By Proposition 4.14, D]r

α is

plus-adequate. By Lemmas 4.9 and 4.10, we get

max〈D]r
α 〉 = r2(nα +

∑
i

pi) + 2r(]SA,α +
∑
i

pi)− 2,

max〈D]r
β 〉 ≤ r2(nβ +

∑
i

qi) + 2r(]SA,β +
∑
i

qi)− 2.

Since max〈D]r
α 〉 = max〈D]r

β 〉, we have the inequality below

r(nα +
∑
i

pi) + 2(]SA,α +
∑
i

pi) ≤ r(nβ +
∑
i

qi) + 2(]SA,β +
∑
i

qi).

This inequality holds for all values of r. Taking very large values of r, we can compare

the coefficients, so that

nα +
∑
i

pi ≤ nβ +
∑
i

qi.

But w(Dα) +
∑

i pi = w(Dβ) +
∑

i qi. Using this equation in the above inequality,

we conclude that nα − w(Dα) ≤ nβ − w(Dβ).

Proof of the second Tait conjecture. If both Dα and Dβ are reduced alternating, then

by Lemma 4.15, it follows that nα − w(Dα) = nβ − w(Dβ). But by the first Tait

conjecture, nα = nβ. Therefore, w(Dα) = w(Dβ).

This conjecture also has some interesting corollaries and implications. Indeed,

some authors formulate the second Tait conjecture in the form of one of the following

corollaries.

Corollary 4.16. An amphicheiral (or acheiral) alternating link has zero writhe.

Proof. If link diagram D has writhe w(D), its mirror image must have writhe −w(D).

Since it is amphicheiral alternating, the writhes are equal and therefore, w(D) must

be zero.
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Corollary 4.17. An amphicheiral alternating link has an even crossing number.

Proof. It follows from Corollary 4.16, because if it has an odd crossing number, it

cannot have a zero writhe.

4.3 The third Tait (flyping) conjecture

We shall not prove the flyping conjecture here. It is only stated and discussed here for

the sake of completeness. There is a geometric proof by Thistlethwaite and William

Menasco.

The flype (or flyping move) is defined as the one given in the diagram below:

Recall that the conjecture states: Any two reduced alternating diagrams of an

oriented, prime alternating link are related by a finite sequence of flyping moves.

It should be noted that the flyping conjecture implies other Tait conjectures. For

instance, the second Tait conjecture follows from the flyping conjecture. Observe that

each flype move preserves writhe. Since, any two reduced alternating link diagrams of

isotopic links are related by a finite sequence of flyping moves, it follows that writhe

is an invariant for reduced alternating link diagrams.
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Chapter 5

Categorification

5.1 Homology theories

The Euler characteristic χ is a topological invariant. That is, two topological spaces

belonging to the same homeomorphism class have the same χ. For a polyhedron, it

is given by χ = v − e + f , where v, e and f are respectively the number of vertices,

edges and faces. One may generalize this to a definition valid for simplicial complexes.

A simplicial complex is a set composed of simplexes. A 0-simplex is just a point, 1-

simplex is an edge, 2-simplex is a triangle (consisting of its interior), 3-simplex is a

solid tetrahedron and n-simplex is a higher-dimensional analogue. One easily sees

that the definition of χ valid for simplicial complexes should then be

(5.1) χ(X) = k0 − k1 + k2 − k3 + · · · =
∞∑
n=0

(−1)nkn,

where kn is the number of n-simplexes in X. Putting k0 = v, k1 = e, k2 = f and

kn = 0 for higher n reduces this definition to the polyhedron case. Still more generally,

we may define free abelian groups Cn(X) so that χ appears as an alternating sum of

the ranks of these groups:

(5.2) χ(X) =
∞∑
n

(−1)n rkCn(X).

One easily sees that rk Cn(X) = kn so that the definitions agree. Thus, Cn must be

free abelian groups generated by the n-simplexes.

The following chain of free abelian groups is commonly referred to as a chain

complex.

(5.3) · · · → Cn ∂n−→ Cn−1 ∂n−1−−−→ · · · ∂3−→ C2
∂3−→ C1

∂1−→ C0 → 0.

In the above chain complex, all but finitely many Cn are zero. Further, ∂n∂n−1 = 0

(commonly written as ∂2 = 0), where the map ∂ (called the differential or boundary

operator) maps simplexes to their boundaries. The condition ∂2 = 0 (a necessary

condition for chain complexes) is equivalent to saying that boundary of a boundary

is zero (or rather, a boundary has no boundary). The homology groups Hn(X) are

41



defined as

(5.4) Hn(X) =
ker ∂n

im ∂n−1

.

Further still, simplicial homology may be generalized to singular homology. We

still have a similar looking chain complex with ∂2 = 0 and the homology groups are

defined in the same way. If the groups Hn(X) have finite rank, it turns out that rk

(Cn) = rk (Hn(X)).

The homology groups Hn(X) are more fundamental to the topological space X

than its Euler characteristic χ(X). Besides, Hn is a functor from the category of chain

complexes to the category of abelian groups.

Later, inspired by the homology theory for spaces, we will construct a homology

theory for links such that the graded Euler characteristic of this homology turns out

to be the Jones polynomial.

5.2 Categories and functors

Let R be a commutative ring. Chain complexes of R-modules form a category KomR

(sometimes denoted by ChR in some texts) in which objects are chain complexes

(C∗, ∂∗) and a morphism from a chain complex (C∗, ∂∗) to another chain complex

(C ′∗, ∂
′
∗) is a sequence of homomorphisms ψn : Cn → C ′n such that ψn−1 ◦ ∂n = ∂′n ◦ψn

for all n. That is, the following diagram

(5.5)

· · · Cn+1 Cn Cn−1 · · ·

· · · C ′n+1 C ′n C ′n−1 · · ·

∂n+2 ∂n+1

ψn+1

∂n

ψn ψn−1

∂n−1

∂′n+2 ∂′n+1 ∂′n ∂′n−1

commutes. As noted above, Hn is a functor from KomR to R-Mod (abelian groups

are Z-modules).

Let X, Y be spaces and f : X → Y be a continuous map (hence a morphism in

Top). Then f induces a chain map or morphism (C∗(X), ∂∗(X)) → (C∗(Y ), ∂∗(Y ))

in KomR. From the discussion above, it follows that Hn is a functor from Top to

R-Mod.
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Chapter 6

Khovanov homology

6.1 Categorification of ĴL(q)

The bracket polynomial may be normalized in the following way:[ ]
= q + q−1,[

D
]

= (q + q−1) [D] ,[ ]
=
[ ]

− q−1
[ ]

.

Observe that we used the symbol [D] to denote the bracket polynomial defined in

this way.

Proposition 6.1. The bracket [D] is R2,3 but changes by a factor of q±1 or −q±2

under R1.

This is easily checked.

Let n be the number of crossings in the link diagram D. Let n+ and n− be the

number of positive crossings and negative crossings in D such that w(D) = n+ − n−.

Define the unnormalized Jones polynomial as

(6.1) Ĵ(D) = (−1)n−qn+−2n− [D].

Theorem 6.2. The polynomial Ĵ(D) is an invariant for oriented links. The usual

Jones polynomial J(D) is related to Ĵ(D) by the relation

(6.2) J(D) = Ĵ(D)/(q + q−1).

Proof. The term (−1)n−qn+−2n− is R2,3-invariant. By Proposition 6.1, adding or re-

moving a positive kink multiplies the bracket by a factor of q±1 and adding or removing

a negative kink multiplies the bracket by a factor of −q±2. The term (−1)n−qn+−2n−

negates the changes in bracket polynomial under R1. Since Ĵ(D) is normalized by

giving the unknot a value of q + q−1, we simply divide Ĵ(D) by this value to get the

usual Jones polynomial J(D).

Remark 6.3. One may obtain the Jones polynomial VL(t) by substituting q = −t1/2.

Using the skein relation, each crossing of D can be smoothed in two ways—1-
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smoothing (in which bracket polynomial gets multiplied by q−1) and 0-smoothing.

Let ]1 be the number of 1-smoothings and ]S the number of circles (loops) for a state

S.

Proposition 6.4. Let S be the set of all states of an oriented link diagram D. Then

the bracket [D] can be written as a state-sum:

(6.3) [D] =
∑
S∈S

(−1)]1q]1(q + q−1)]S.

Proof. Each state S has ]S circles and each circle has the bracket q + q−1. Each

time a crossing receives a 1-smoothing, the bracket changes by a multiple of −q.
Since state S has ]1 number of 1-smoothings, it is easy to see that each contributes

(−1)]1q]1(q + q−1)]S to the sum.

Theorem 6.5. The unnormalized Jones polynomial Ĵ(D) can be written as a state-

sum:

(6.4) Ĵ(D) =
∑
S∈S

(−1)n−+]1qn+−2n−+]1(q + q−1)]S.

Proof. It follows trivially from the definition of Ĵ(D) and Proposition 6.4.

Assign an arbitrary order of the crossings of D. A state S may be represented by

a binary sequence of length n. The bit 0 or 1 denote the type of smoothing for each

crossing. That is, any state is of the form x1x2 · · ·xn where xi = 0 if the ith crossing

has 0-smoothing, otherwise xi = 1. See that there is a one-to-one correspondence

between the set S of states and the set of all binary sequences of length n.

The states in S form a category, denoted by S(D). The objects in S(D) are the

states of D (represented as binary sequences) while morphisms S1 → S2 are such

that S2 is obtained from S1 by changing a single 0-smoothing in S1 to 1-smoothing.

Speaking in terms of binary sequences, we have the morphism

x1 · · ·xi · · ·xn → x1 · · ·x′i · · ·xn,

where xi = 0 and x′i = 1, and every other bit is left unchanged.

There is a notation for such a morphism. We use the asterisk ∗ to denote where

the change of smoothing from 0 to 1 occurs. For instance,

000
0∗0−−→ 010

∗10−−→ 110
11∗−−→ 111.

The state category S(D) can be given some extra structure. Each state object has

a height ]1 (the number of 1-smoothings) associated with it. For instance, 0 · · · 0 is

the only state with height 0 and 1 · · · 1 is the only state with height n. Every other

state has a height between 0 and n. All state objects can then be represented in a

44



diagram according to their heights. All state objects with the same height are placed

in the same column and the arrows go from left to right in the direction of increasing

height. The following are state categories for the Hopf link and the trefoil.

A state diagram is simply a bunch of circles. Let S1 → S2 be a morphism in

the state category S(D). Now we see Si as a bunch of circles and not as a binary

sequence. Observe that two things can happen here. Either two circles in S1 fuse

together to form a circle in S2 or a circle in S1 bifurcates into two circles S2, while

every other circle remain untouched. Observe that in each case S1 → S2 can be

thought of as a surface cobordism since a disjoint union of circles form a 1-manifold.

These cobordisms are directed down the page as shown below.

From the discussion above, we have another category whose objects are states seen

as disjoint union of circles and whose morphisms are surface cobordisms. It is taken

care that this morphism (surface cobordism) is one of the two types shown above.

We denote this category by CobS(D). See that CobS(D) shares the same height

structure we associated to S(D) although this has become less apparent. This can

be seen from the equivalence of the categories CobS(D) and S(D). An appropriate

functor S(D) → CobS(D) that builds this equivalence should assign to each object

of CobS(D) its correct height.
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Proposition 6.6. Let A be a category. Let Mat(A) be the set of all possible tuples

of objects of A. A morphism from a p-tuple O = (O1, . . . ,Op) to a q-tuple O′ =

(O′1, . . . ,O′q) is defined to be the matrix [dij]p×q where dij is the morphism Oi →
O′j. Then Mat(A) forms a category in which objects are tuples of objects of A and

morphisms are the matrices as defined above. The composition of morphisms is given

by matrix multiplication.

The proof follows by construction. One simply checks that all requirements of a

category are satisfied.

Look atMat(CobS(D)). The categoryMat(CobS(D)) is constructed from CobS(D)

in the way Mat(A) is constructed from A in Proposition 6.6. Further, we ensure that

the following two conditions are satisfied.

1. If there is no morphism (cobordism) Si → Sj in CobS(D), we equate dij = 0.

2. Each object in Mat(CobS(D)) is of the form Oh = (S1, . . . , Sk) where each Si

has height h (that is, ]1 = h) and these are all the states with height h.

These two conditions ensure that we end up with something like the following:

(6.5) O0 d0−→ O1 d1−→ O2 d2−→ · · · d
n−1

−−−→ On.

In the above, we have collapsed all states with the same number of 1-smoothings

into an object Oh. For the sake of completion, we may add the initial object 0̂ and

the final object 1̂ in Mat(CobS(D)). In fact, we can equate 0̂ = 1̂ if we define both

of them to be empty tuples. Then by this construction Mat(CobS(D)) becomes a

pointed category (a pointed category is one with a zero element, that is, the initial

object and final object exist and are isomorphic).

(6.6) 0̂
0−→ O0 d0−→ O1 d1−→ O2 d2−→ · · · d

n−1

−−−→ On 0−→ 0̂.

The morphism 0 in the above category is zero map, that is, it satisfies di · 0 = 0 =

0 · di.
This reminds us of a chain complex except that Oh are tuples of states and not

abelian groups (or modules) and we have not established that di+1 ◦ di = 0. But both

of these problems can be fixed and we can indeed have a chain complex this way. We

shall come back to this later. Now we digress to something else.

A graded vector space is a decomposition of a vector space into a direct sum of

subspaces. Let W be a Z-graded vector space. Then

W =
⊕
m∈Z

Wm,
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where each Wm is a subspace of W . The subspace Wm is said to have degree m and

its elements are said to be homogeneous elements of degree m.

Although Z grading is used above, any indexing set I may also be used. We stick

to Z grading. The graded dimension of W , denoted by dimqW , is defined to be the

power series

(6.7) dimqW (q) :=
∑
m∈Z

qm dim(Wm).

Proposition 6.7. Let W =
⊕

mWm and W ′ =
⊕

mW
′
m be two Z-graded vector

spaces. Then

dimq(W ⊕W ′) = dimqW + dimqW
′,(6.8)

dimq(W ⊗W ′) = dimqW · dimqW
′.(6.9)

The proof follows from the definition given by Equation 6.7 and expansion of the

terms.

Proposition 6.8. Given a Z-graded vector space W =
⊕

mWm, define shifting op-

eration, denoted by {l}, by W{l}m := Wm−l so that W{l} =
⊕

mW{l}m. Then

(6.10) dimqW{l} = ql dimqW.

Let V = F2[x]/(x2). We may also use Z orQ instead of F2. This algebraic structure

can be viewed in different ways. First, V can be realized as a graded vector space.

A basis would be {1, x}. By grading deg(1) = 1 and deg(x) = −1, it follows that

dimq V = q+ q−1. This choice of grading is not random since the bracket polynomial

has been normalized so that its value for the crossingless unknot is q + q−1.

Consider the kth tensor product V ⊗k. Then dimq V
⊗k = (q + q−1)k. By shifting

{r}, it follows that dimq V
⊗k{r} = qr(q + q−1)k. Substituting r = n+ − 2n− + ]1 and

k = ]S, it follows that

(6.11) dimq V
⊗]S{n+ − 2n− + ]1} = qn+−2n−+]1(q + q−1)]S.

Comparing this form with the state-sum model of the unnormalized Jones polynomial

given by Equation 6.4, we see an almost perfect resemblance. Indeed, this has been

our intention all along. But before hitting the jackpot, we have to digress yet again.

As mentioned above, V may be viewed in different ways. Endowed with some

required operations, it becomes a Frobenius algebra. Recall that a Frobenius algebra

is a finite-dimensional associative algebra with a bilinear form. There is a nice duality

theory associated with Frobenius algebras.
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Let m : V ⊗ V → V be a bilinear map defined as follows

(6.12) 1⊗ 1 1, 1⊗ x x, x⊗ 1 1, x⊗ x 0.

This operation is often called multiplication. Let ∆ : V → V ⊗V be defined as follows

(6.13) x x⊗ x, 1 1⊗ x+ x⊗ 1.

A monoidal (or tensor) category A is one which is equipped with an associative

bifunctor ⊗ : A × A → A and an object I which is an identity (unit) for ⊗. The

associativity and identity are up to a natural isomorphism.

Monoidal categories may be seen as a generalization of vector spaces, abelian

categories and R-modules under tensor products. This way, Ab, the category of

abelian groups and Vectk, the category of vector spaces over a field k, are monoidal

categories. Observe that Z is then the unit for Ab and the vector space of dimension

1 is the unit for Vectk. Both of these monoidal categories are special cases of R-

Mod, the category of R-modules. A monoidal category is then a categorification of

a monoid, whose elements are the isomorphism classes of the category’s objects and

whose binary operation is the tensor product.

The Frobenius algebra V may be abstracted as a Frobenius object (V,m, η,∆, ε)

in a monoidal category (A,⊗, I), associated with four morphisms

(6.14) m : V ⊗ V → V, η : I → V, ∆ : V → V ⊗ V, ε : V → I

such that (V,m, η) is a monoid, (V,∆, ε) is a comonoid and the diagrams

(6.15)

V ⊗ V V ⊗ V ⊗ V

V V ⊗ V

∆⊗V

m V⊗m

∆

V ⊗ V V ⊗ V ⊗ V

V V ⊗ V

V⊗∆

m m⊗V

∆

commute. A monoid is an object together with two morphisms: multiplication

m and unit η satisfying some commutative diagrams. A comonoid is the dual of a

monoid, has two morphisms: comultiplication ∆ and counit ε.

In our case, 1 is a multiplicative unit, and F2 is the unit I above. That is,

η : F2 → V is given by η(1F2) = 1V . Dually, the counit ε : V → F2 is such that

ε(1V ) = 1F2 . Frobenius algebras are algebraic counterparts to (1 + 1)-dimensional

topological quantum field theories (TQFTs).

In the simplest level, (1 + 1)-dimensional TQFTs are functors from 2-Cob, the

category of 2-dimensional cobordisms between 1-dimensional manifolds, to Vectk.

The correspondence between Frobenius algebras and (1 + 1)-dimensional TQFTs can

be seen as follows:
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1. The circle S1 is the only closed and connected 1-manifold. A closed 1-manifold

is then a disjoint union of circles. A TQFT associates a vector space V to each

S1 and the tensor product of vector spaces to a disjoint union of circles, denoted

by
∐
S1.

2. Let
∐

a S
1 and

∐
b S

1 be two cobordant 1-manifolds. Let us denote the cobor-

dism by ζ :
∐

a S
1 →

∐
b S

1. A dual of this map gives ζ ′ :
∐

b →
∐

a. The

significance of this dual will become apparent soon enough. Suppose a TQFT

takes (functorially) them to
⊗

a V and
⊗

b V . Then this TQFT associates ζ to

a multilinear map ∂ζ :
⊗

a V →
⊗

b V .

3. All cobordisms in 2-Cob can be reduced to the elementary cobordism mζ :

S1
∐
S1 → S1 or its dual ∆ζ : S1

∐
S1 → S1 (these are the cases of cobordism

between 1 circle and 2 disjoint circles) . That is, all cobordisms can be expressed

using operations between mζ and ∆ζ .

4. Associating a map with a disk gives rise to a unit ηζ and counit εζ .

Theorem 6.9. A commutative Frobenius algebra uniquely determines (up to isomor-

phism) a (1 + 1)-dimensional TQFT.

This should be clear from the discussion above. Once again we put V = F2[x]/(x2).

We now go back to S(D), the category of states of D. Each state object S in S(D), as

we observed, is a bunch of circles and the morphisms S1 → S2 are surface cobordisms.

With our choice of V , we have a TQFT describing these cobordisms. Associate V to

each circle in each state S. Suppose there are ]S circles in S. Our TQFT associates

V ⊗]S{n+ − 2n− + ]1} to S. The reason of this shifting is obvious once we see that

(6.16) dimq V
⊗]S{n+ − 2n− + ]1} = q(n+−2n−+]1)(q + q−1)]S,

and then compare with the state-sum model of Ĵ(D).

Let i = ]1 − n− and j = deg(v) + i + n+ − n− where v ∈ V ⊗]S{n+ − 2n− + ]1}.
This i is called homological grading and j is called quantum grading or q-grading. The

names are not very important to us.

Define

(6.17) Ci,∗(D) :=
S⊕

]1=i+n−

V ⊗]S{n+ − 2n− + ]1}.

To turn this into a chain complex, we need a differential ∂i : Ci,∗(D) → Ci+1,∗(D).

For this, we go back to our discussion on TQFT. Recall that our TQFT associated

V ⊗]S (we may ignore the shifting for a while) to state S and multilinear maps ∂ζ to

surface cobordisms ζ.

The map ∂ζ is defined in the following way:
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1. Let S1 and S2 be two state objects in CobS(D). The cobordism ζ : S1 →
S2 affects at most two circles in either S1 or S2. Depending on whether the

morphism is fusion or bifurcation, the effect of ∂ζ is either multiplication m :

V ⊗ V → V or comulitiplication ∆ : V → V ⊗ V .

2. To all the circles left untouched in the cobordism ζ, the effect of ∂ζ is an identity

map.

In the beginning, we chose an ordering of crossings. Using that order, every

morphism in the state category S(D) is represented by a binary sequence with an

asterisk. This asterisk denotes the crossing where the change of smoothing occurs.

There is an appropriate functor S(D) → CobS(D) which takes a binary sequence

to its corresponding state (1-manifold) and smoothing change to its corresponding

cobordism ζ. We may choose to use the same notation for both smoothing change

and cobordism since there is little chance of confusion. Thus, ζ is a binary sequence

is an asterisk. Define sgn(ζ) := (−1)l where l is the number of 1s to the left of the

asterisk.

Define the map ∂i : Ci,∗(D)→ Ci+1,∗(D) as follows

(6.18) ∂i(v) =
∑

ζ such that Tail(ζ)=S

sgn(ζ)∂ζ(v),

where v ∈ VS ⊂ Ci,∗(D). Here we used the notation VS to denote the vector space,

V ⊗]S{n+ − 2n− + ]1}, associated to state S by our TQFT.

Proposition 6.10. The map ∂ is a differential, that is, ∂i+1 ◦ ∂i = 0.

To see this, first notice that without the function sgn, the faces of the cube (state

category) commutes. This can be shown either algebraically using the definition of the

maps m and ∆ associated with V (this is achieved by breaking it down into cases), or

geometrically using the fact that the cobordisms along each of the two routes in a face

are same up to homemorphism and hence they induce the same linear map. Then we

observe that sgn occur in odd numbers on every face. This turns the commutativity

into anti-commutativity.

We now have a chain complex, denoted by Kh(D)

(6.19) 0 −→ C0,∗ ∂0−→ C1,∗ ∂1−→ C2,∗ ∂2−→ · · · ∂
n−1

−−−→ Cn,∗ −→ 0.

We now go back to Mat(CobS(D)). Define a functor F : Mat(CobS(D)) →
Kh(D) sending the matrix object Ok to vector space Ck,∗ and matrix morphism

dk to differential ∂k. It follows that these two categories are equivalent. This can

be established by defining an appropriate (and obvious) functor G : Kh(D) →
Mat(CobS(D)).
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Given an oriented link diagram D, this construction gives a Khovanov chain com-

plex Kh(D). The (co)homology groups are defined in the usual way.

(6.20) Hi,∗ =
ker ∂i

im ∂i−1
.

The graded Euler characteristic of this (co)homology is defined in the usual way.

(6.21) χ(H∗,∗) =
∑
i

(−1)i rk(Hi,∗).

The degree of the differential ∂i is one and the (co)homology groups Hi,∗ are finite

dimensional. We conclude that rk(Hi,∗) = dimq C
i,∗. Thus, the Euler characteristic

can be directed calculated from the Khovanov chain complex without computing the

(co)homology groups.

Theorem 6.11. The graded Euler characteristic of the Khovanov chain complex

Kh(D) is the unnormalized Jones polynomial Ĵ(D).

This follows trivially from our construction. Indeed, we may expand∑
i

(−1)i dimq C
i,∗ =

∑
i

(−1)i
∑

]1=i+n−

dimq V
⊗|S|{n+ − 2n− + ]1}

=
∑

(−1)]1−n−qn+−2n−+]1(q + q−1)|S|.

Since (−1)]1−n− = (−1)]1+n− (by adding 2n− to the exponent), the theorem follows.

Theorem 6.12. The Khovanov homology groups are invariants for links.

Two diagrams of isotopic links may have different chain complexes (chain groups)

but the same homology groups (up to isomorphism). An explicit and detailed con-

struction of the chain maps inducing the corresponding isomorphisms can be found

in this paper [Jac04] by Magnus Jacobsson.

6.2 Categorification of 〈̂·〉

In this section, we categorify the reduced bracket 〈̂·〉 following Oleg Viro’s approach

[Vir04]. One can easily guess we begin from the state-sum model of 〈̂·〉. If needed,

we recast the sum into a form which can easily be categorified. We use the variable

A used in the original bracket skein. In each summand of the modified sum, there

should a (−1)n term for some n and a power of A.

Many of the ideas from the previous section carry over. For instance, we choose an

arbitrary ordering of the crossings and represent the morphisms in the state category

S(D) by binary numbers with an asterisk.
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The unreduced bracket polynomial 〈̂·〉 admits the following state-sum form:

(6.22) ˆ〈D〉 =
∑

S∈S(D)

Aσ(S)(−A2 − A−2)]S,

where σ(S) = ]0 − ]1, the difference between the number of 0-smoothings (A) and

1-smoothings (B). The power of a binomial in the summand is not very elegant. One

may expand the power and break the summand into a sum of monomials thus writing

〈̂·〉 as a sum of monomials only. For that purpose, we need a definition.

An enhanced state (en-state) s assigns a sign (positive or negative) to each circle

in S. Since there are ]S circles in S, there are
∑]S

k=0

(
]S
k

)
en-states in S so that we

have a total of
∑S(D)

S

∑]S
k=0

(
]S
k

)
en-states.

Expanding the binomial power, we arrive at the following en-state-sum form:

(6.23) ˆ〈D〉 =
∑

s∈Se(D)

(−1)]sAσ(s)+2τ(s),

where τ(s) is the number of positive circles minus the number of negative circles in

state s and the sum is over all the en-states s ∈ Se(D).

Remark 6.13. We used the notation s for en-states while Se denotes the set of such

en-states. We could have used Se for en-state but for brevity, we stick with s.

The model of 〈̂·〉 given by Equation (6.23) is the one we will categorify. Define

(6.24) Sa,b(D) := {s ∈ Se(D) | σ(s) = a, σ(s) + 2τ(s) = b}.

Define Ca,b(D;Z) := ZSa,b(D), the Z-module with basis Sa,b(D). It follows that

C(D;Z) =
⊕

a,bCa,b(D;Z) is a bigraded Z-module. This is the model of our chain

complex.

Remark 6.14. The Z-module Ca,b(D;Z) is generated by the en-states s satisfying

σ(s) = a, σ(s) + 2τ(s) = b in the same way Cn(X;Z) is generated by n-simplexes in

simplicial homology. The difference is of course the bigrading.

Recall that when we build the category S(D) in the categorification of VL(t), the

effect of the morphisms S1 → S2 are 0  1 at some crossing and identity at all

other crossings. This decreases σ(·) by 2. Thus we look at morphisms Ca,b(D;Z) →
Ca−2,b(D;Z).

To have a morphism Ca,b(D;Z)→ Ca−2,b(D;Z), we need to define morphisms s→
s′ where σ(s) = σ(s′)+2 and τ(s)+1 = τ(s′). The first condition is trivially satisfied by

our construction since we are only looking at s1 → s2 with 0 1 at only one crossing

and identity at all other crossings. By the second condition puts more restriction

on the possible forms the morphism s1 → s2 can take. In the construction of the

category CobS(K), we saw that morphisms between states are 2-cobordisms between
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compact 1-manifolds in which either two circles fuse to form a circle (multiplication

m : V ⊗ V → V ) or a circle bifurcates into two (comultiplication ∆ : V → V ⊗ V ).

Denote a positive circle by + and negative circle −.

Proposition 6.15. The following are all the forms the morphism ζ : s1 → s2 can

take:

ζ :
− −

 
−

ζ :
+
 

+ +

ζ :
+ −

 
+

ζ :
−
 

− +

ζ :
− +

 
+

ζ :
−
 

+ −

(6.25)

The truth about the above proposition is obvious and follows from the second

condition. Notice that we cannot have ζ : + +  ±.

Remark 6.16. The Proposition 6.15 makes it clear why we use a Frobenius algebra

V to describe the morphisms ζ. Recall that V = 〈1, x〉 admits m : V ⊗ V → V and

∆ : V → V ⊗ V such that m satisfies 1 ⊗ 1  1, x ⊗ 1  x, 1 ⊗ x  x, x ⊗ x → 0

and ∆ satisfies x  x ⊗ x, 1  1 ⊗ x + x ⊗ 1. Associate − with 1 and + with

x. Associate a disjoint sum of signed circles with tensor product of corresponding

generators of V .

Define a homomorphism ∂a,b : Ca,b(D,Z)→ Ca−2,b(D,Z) by setting

(6.26) ∂a,b(s) =
∑

s′∈Sa−2,b

(−1)]1
+

[s, s′]s′,

where ]1+ the number of 1-smoothings to the right of (or bigger than) the asterisk (or

equivalently x(D) as defined below) and [s, s′] is called the incidence number which

requires a definition now. Indeed, from our construction in the previous section, we

do not need anything fancy here. The number [s, s′] is only to make sure that s ∈ Sa,b
is mapped to the correct linear combination of s′ ∈ Sa−2,b. As shall see in coming

pages, we do not need any more restriction to make ∂a,b a differential for the chain

complex we are building other than what has already been imposed.

Then it is very natural to define [s, s′] in this way: [s, s′] takes values from the set

{0, 1} and has value 1 if and only if the following conditions hold: (1) the states s

and s′ are identical except at one crossing x(D) at which s has 0-smoothing and s′

has 1-smoothing, (2) every circle of s not interacting with x(D) keeps its sign in s′,

(3) τ(s′) = τ(s) + 1.

Remark 6.17. One shortcoming of defining ]1+ in the way we did is that we have to

prove that the homology is independent of the order of the crossings. Indeed, this is

the case [Kho00]. Oleg Viro suggested an alternative definition which bypasses this
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checking [Vir04].

Theorem 6.18. The homomorphism ∂a,b satisfies ∂a−2,b ◦ ∂a,b = 0.

This is checked by expanding ∂a−2,b ◦ ∂a,b(s) using the definition of ∂a,b given by

Equation (6.26). The above restrictions forces this equality. Thus ∂a,b is a differential.

The Khovanov homology is then defined to be the homology of the chain complex

we have thus constructed.

(6.27) Ha,b(D;Z) =
ker ∂a,b

im ∂a+2,b

.

One may attempt the categorify the bracket skein relation and obtain a long exact

sequence of this homology [Vir04]. This long exact sequence may be used to compute

Khovanov homology for torus links T (2, n) for n ≥ 0.

Khovanov homology is strictly more powerful than the Jones polynomial. For

instance, knots 51 and 10132 have the same Jones polynomial −q−7 +q−6−q−5 +q−4 +

q−2 but they have different homology groups. Khovanov homology also detects the

unknot [KM11] which is still an open problem for the Jones polynomial. It gave a

much easier proof of Milnor’s conjecture.
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