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Integration on Manifolds and Stokes’ Theorem

Ronald Huidrom

Abstract

Integration on manifolds is made possible using differential forms and orientability. In
this term paper, we discuss differential k-forms and orientability, and how they naturally
generalize integration on Euclidean spaces to integration on manifolds. Then we look at
manifolds with boundary and discuss two classic theorems in differential geometry, Stokes’
theorem and Green’s theorem.

Introduction

In manifold theory, we use concepts from Rn to generalize these concepts to manifolds. Pullback
is a recurring idea in manifolds where we make definitions for manifolds by taking Rn as reference.
For example, to define differentiability on manifolds, we refer to differentiability on Rn which
is already familiar to us. Using pullbacks make this possible. To make integration possible
on manifolds, we introduce differential forms and we integrate forms on manifolds just like we
integrate functions on Rn.

In section 1, we introduce differential forms which generalize integration on Rn to integration
on manifolds. In section 2, we discuss orientability of manifolds. Orientable manifolds are those
to which we can give a consistent definition of “counterclockwise” and “clockwise”. Not all
manifolds are orientable. For example, a Möbius strip is non-orientable. In section 3, we discuss
manifolds with boundary by taking the closed upper half space as a reference in the same way we
take Rn as a reference for manifolds without boundary. An important result is that the boundary
of an n-manifold is itself an (n−1)-manifold. In section 4, we define integration on manifolds. We
cannot integrate on any manifold. We can only integrate differential n-forms on an oriented n-
manifold under certain conditions. Once again, we use our understanding of integration on Rn to
integrate on manifolds. In section 5, we introduce Stokes’ theorem which relates the integration
on a manifold with integration on its boundary. We deduce that when applied to a plane, Stokes’
theorem reduces to Green’s theorem, another classic theorem in differential geometry.

Knowledge of analysis (calculus) on Rn is assumed. Some knowledge of manifold theory such as
differentiability on smooth manifolds and tangent spaces are assumed. Henceforth, we assume
all manifolds to be smooth. Propositions and theorems are stated without proofs.

1 Differential forms

Informally, anything under an integral sign is a differential form. If f is a smooth real-valued
function on a manifold M , its differential 1-form is the differential df defined by (df)p(Xp) = Xpf
for any p ∈ M and Xp ∈ TpM . The cotangent space T ∗pM of M at p is the dual space of the
tangent space TpM , that is, T ∗pM = Hom(TpM,R). A covector at p is an element of the cotangent
space T ∗pM . The cotangent bundle T ∗M is the union of the cotangent spaces at all points of M .

A k-tensor on a vector space V is a k-linear function f : V × · · · × V → R. The k-tensor f is
alternating if for any permutation σ ∈ Sk,

f(vσ(1), . . . , vσ(k)) = (sgn σ)f(v1, . . . , vk).
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Alternating k-tensors on V form a vector space Ak(V ), also denoted by
∧k

(V ∨). Alternating

k-tensors on the tangent space TpM form the vector space
∧k

(T ∗pM).

Definition 1.1 (differential k-form). A differential k-form or simply k-form is a function ω that

assigns to each point p ∈M an alternating k-tensor ωp ∈
∧k

(T ∗pM).

A top form is an n-form where n is the dimension of the manifold. We are only concerned with
top forms since they are the only forms that can be integrated.

Let (U, x1, . . . , xn) be a chart of M . A k-form on U is a linear combination ω =
∑
aIdx

I , where
I ∈ Jk,n = {I = (i1, . . . , ik | 1 ≤ i1 ≤ · · · < ik ≤ n)} and the aI are functions on U . Writing
∂i = ∂/∂xi, we have the equality on U for I, J ∈ Jk,n:

dxI(∂j1 , . . . , ∂jk) = ∂IJ =

{
1 for I = J,

0 for I 6= J.

Proposition 1.2. Let M be an n-manifold and (U, x1, . . . , xn) be a chart on M . Let f, f1, . . . , fn

be smooth functions on U . Then

df1 ∧ · · · ∧ dfn = det

[
∂f j

∂f i

]
dx1 ∧ · · · ∧ dxn.

Proposition 1.3. A k-form ω =
∑
aIdx

I on U is smooth if and only if the coefficient functions
aI are all smooth on U .

Let F : N → M be a smooth map of manifolds. At each point p ∈ N , the differential F∗,p :
TpN → TF (p)M is a linear map and this induces a pullback map

F ∗ := (F∗,p)
∗ :
∧

(T ∗F (p)M)→
∧

(T ∗F (p)N).

If ωF (p) ∈
∧

(T ∗F (p)M), then its pullback F ∗(ωF (p)) is the alternating k-tensor at p in N given by

F ∗(ωF (p))(v1, . . . , vk) = ωF (p)(F∗,pv1, . . . , F∗,pvk), vi ∈ TpN.

If ω is a k-form on M , then its pullback F ∗ω is the k-form on N defined pointwise by (F ∗ω)p =
F ∗(ωF (p)) for all p ∈ N .

2 Orientability

It is a common knowledge from single-variable calculus that reversing the limits of a definite
integral reverses the sign of the integral. Along the real line, there are two orientations — going
left and going right. In R2, there are two orientations again — going counterclockwise and
going clockwise. If we consider only ordered bases, then we have a rule of defining orientations.
Indeed, in R3, if x = {x1, x2, x3} and y = {y1, y2, y3} are two ordered bases, then there is a
unique nonsingular 3 × 3 matrix A such that x = Ay (take x and y as column vectors). Then
we say x and y are of same orientation if det(A) > 0. If det(A) < 0, we say they are of opposite
orientation. In fact, we can generalize this to higher dimensions and declare that Rn has only
two orientations.
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Let x = {x1, . . . , xn} and y = {y1, . . . , yn} be two ordered bases of Rn. Then we say x and y
are equivalent ordered bases and write x ∼ y if and only if det(A) = 0. The matrix A is defined
as above. It is easy to check that this defines an equivalence relation on the set of all ordered
bases. Indeed, this partitions the set into two disjoint sets which define the two orientations of
Rn. This is generalized to any vector space. That is, every finite dimensional vector space has
two orientations.

Consider an n-dimensional vector space V . Exploiting the fact that the space
∧n

(V ∨) of n-
covectors on V is one-dimensional, we can use an n-covector to specify orientation of V .

Lemma 2.1. Let u1, . . . , un and v1, . . . , vn be vectors in a vector space V . Suppose

uj =

n∑
i=1

aijvi, j = 1, . . . , n,

for a matrix A = [aij ] of real numbers. If β is an n-covector on V , then

β(u1, . . . , un) = (detA)β(v1, . . . , vn).

In the above lemma, suppose {u1, . . . , un} and {v1, . . . , vn} are ordered bases of V . See that
β(u1, . . . , un) and β(v1, . . . , vn) have the same sign if and only if detA > 0 which is the same
thing as saying that β(u1, . . . , un) and β(v1, . . . , vn) are equivalent ordered bases. We say that
β determines the orientation (v1, . . . , vn) if β(v1, . . . , vn) > 0.

Let U be an open set of a smooth n-manifold M . Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two
frames on U . If Yj =

∑
i a
i
jXi, then the two frames equivalent if and only if det(A) > 0 at every

point in U where A = [aij ] is the change-of-basis matrix.

A pointwise orientation µ on M assigns to each p ∈ M an orientation µp of the tangent space
TpM . The pointwise orientation µ is said to be continuous at p ∈M if there exists a neighborhood
U of p on which µ is represented by a continuous frame. Of course, µ is continuous on M if it is
continuous at every point p ∈M .

Definition 2.2. An orientation on M is a continuous pointwise orientation on M . An orientable
manifold is one which has an orientation. A manifold together with an orientation is said to be
oriented.

It can be shown that, just as in the case of vector spaces, a connected orientable manifold M
has exactly two orientations.

Lemma 2.3. A pointwise orientation [(X1, . . . , Xn)] on a manifold M is continuous if and
only if each point p ∈ M has a coordinate neighborhood (U, x1, . . . , xn) on which the function
(dx1 ∧ · · · ∧ dxn)(X1, · · · , Xn) is everywhere positive.

Theorem 2.4. A n-manifold M is orientable if and only if there exists a smooth nowhere-
vanishing n-form on M .

If ω and ω′ are two nowhere-vanishing smooth n-forms on M , then ω = fω′ for some nowhere-
vanishing function f on M . If M is connected, such a function f is either everywhere positive
or everywhere negative. This partitions the nowhere-vanishing smooth n-forms on an orientable
manifold M into two equivalent classes by the equivalence relation

ω ∼ ω′ if and only ω = fω′ with f > 0.
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Definition 2.5 (orientation form). An orientation form on M is a smooth nowhere-vanishing
n-form ω such that ω(X1, . . . , Xn) > 0. We say that ω determines the orientation [(X1, . . . , Xn)].

An oriented manifold is described by a pair (M, [ω]), where [ω] is the equivalence class of an
orientation form on M .

Definition 2.6 (oriented atlas). An atlas on M is oriented if for any two overlapping charts
(U, x1, . . . , xn) and (V, y1, . . . , yn) of the atlas, the Jacobian det[∂yi/∂xj ] is everywhere positive
on U ∩ V .

It can be shown that a manifold M is orientable if and only if it has a oriented atlas.

3 Manifolds with boundary

We define the closed upper half space as follows:

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

We give Hn the subspace topology inherited from Rn. We call the points with xn = 0 the
boundary points of Hn and the points with xn > 0 the interior points of Hn. Using a familiar
notation from point-set topology, we may denote these sets by ∂(H)n and (Hn)◦.

Definition 3.1. Let S ⊂ Rn be a subset. A map f : S → Rm is smooth at a point p in S if there
exists a neighborhood U of p in Rn and a smooth map f̃ : U → Rm such that f̃ = f on U ∩ S.

Of course, we say f is smooth on S if it is smooth at each point of S.

Definition 3.2. A topological space M is said to be locally Hn if every point p ∈ M has a
neighborhood U homeomorphic to an open subset of Hn.

Definition 3.3. A topological space M is said to be a topological n-manifold with boundary if it
is second countable, Hausdorff topological space that is locally Hn.

Definition 3.4 (chart). Let M be a topological n-manifold with boundary and n ≥ 2. Let U ⊂M
be an open set. A chart on M is a pair (U, φ) where

φ : U → Hn

is a homeomorphism.

Clearly, φ(U) is open.

Definition 3.5 (smooth atlas). A smooth atlas is a collection {(U, φ)} of charts such that for
any two charts (U, φ) and (V, ψ), the transition map

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ⊂ Hn

is a diffeomorphism.

Definition 3.6 (interior point). An interior point p of M is such that for some chart (U, φ),
the point φ(p) is an interior point of Hn.
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We may similarly define

Definition 3.7 (boundary point). An exterior point p of M is such that for some chart (U, φ),
the point φ(p) is a boundary point of Hn.

It is not hard to see that interior point and boundary point are well-defined, that is, they are
independent of the charts we choose. Indeed, if (V, ψ) is another chart, then the diffeomorphism
ψ◦φ−1 maps φ(p) to ψ(p), so that φ(p) and ψ(p) are either both interior points or both boundary
points.

Let M be a n-manifold with boundary ∂M . Let (U, φ) be a chart on M . Then we may restrict
to φ′ = φ |U∩∂M on the boundary. Since φ maps boundary to boundary,

φ′ : U ∩ ∂M → ∂Hn = Rn−1.

Let (U, φ) and (V, ψ) be two charts on M . Then

ψ′ ◦ (φ′)−1 : φ′(U ∩ V ∩ ∂M)→ ψ′(U ∩ V ∩ ∂M)

is smooth. Therefore, an atlas {(Uα, φα)} for M induces an atlas {(Uα ∩ ∂M, φα |Uα∩∂U )} for
∂M . This turns ∂M into a manifold of dimension n− 1 without boundary.

Let U and V be two neighborhoods of p in M . Two functions f : U → R and g : V → R are
said to be equivalent if they agree on some neighborhood of p contained in U ∩ V . A germ of
smooth functions at p is an equivalence class of such functions. It is customary to denote [f ],
an equivalence class, by simply f . The set C∞p (M) of germs of smooth functions at p is an
R-algebra with the usual addition, multiplication, and scalar multiplication. The tangent space
TpM is defined to the vector space of all point-derivations on C∞p (M). The cotangent T ∗pM is
the dual of the tangent space, that is, T ∗pM = Hom(TpM,R).

Differential k-forms on M defined to be sections of the vector bundle
∧K

(T ∗M). A k-form is

smooth if it is smooth as a section of
∧K

(T ∗M). An orientation on an n-manifold M with
boundary is a continuous pointwise orientation on M .

As in manifolds without boundary, the orientability of a manifold with boundary is equivalent to
the existence of a smooth nowhere-vanishing top form and to the existence of an oriented atlas.

Definition 3.8. Let p ∈ ∂M . A tangent vector Xp ∈ TpM is said to be inward-pointing if
Xp 6∈ Tp(∂M) and there are a positive real number ε and a curve c : [0, ε] → M such that
c(0) = p, c((0, ε)) ⊂ M◦, and c′(0) = Xp. A vector Xp ∈ TpM is outward-pointing if −Xp is
inward-pointing.

A vector field along ∂M is a function X that assigns to each point p in ∂M a vector Xp ∈ TpM .
If (U, x1, . . . , xn) is a neighborhood of p in M , we may write

Xq =
∑
i

ai(q)
∂

∂xi

∣∣∣∣
q

, q ∈ ∂M.

Smoothness of X along ∂M at p ∈ M is defined in terms of smoothness of the functions ai on
∂M . A vector xp is outward-pointing if and only if an(p) < 0.

Proposition 3.9. On a manifold M with boundary ∂M , there is a smooth outward-pointing
vector field along ∂M .
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It can be shown that the boundary ∂M of an oriented n-manifold M is orientable.

Proposition 3.10. Let M be an oriented n-manifold with boundary. Let p be a point of the
boundary ∂M and Xp be an outward-pointing vector in TpM . An ordered basis (v1, . . . , vn−1) for
Tp(∂M) represents the boundary orientation at p if and only if the ordered basis (Xp, v1, . . . , vn−1)
for TpM represents the orientation on M at p.

4 Integration on manifolds

Integration on manifolds is quite different from integration on Euclidean spaces. For one, we can
only integrate forms, not functions. For a n-manifold, we can only integrate n-forms which must
have compact supprot. Also, M has to be oriented.

Let M be an oriented n-manifold whose orientation is given by an oriented atlas {Uα, φα}.
Let (U, φ) be a chart in this atlas. Let ω be an n-form with compact support on U . Since
φ : U → φ(U) is a diffeomorphism, (φ−1)∗ω is an n-form with compact support on the open
subset φ(U) ⊂ Rn. We define the integral∫

U

ω :=

∫
φ(U)

(φ−1)∗ω.

It is easy to check that the above integral is well-defined, that is, it is independent of the choice
of the chart. Linearity of the integral in Euclidean spaces implies that∫

U

ω + τ =

∫
U

ω +

∫
U

τ.

If we choose a partition of unity {ρα} subordinate to the open cover {Uα} of M , the sum

ω =
∑
α

ραω

is finite. It can be checked that the support of ραω is compact so that the integral
∫
Uα
ραω is

defined. We now define integral of ω over M to be the finite sum∫
M

ω :=
∑
α

∫
Uα

ραω.

It can be checked that the integral defined above is well-defined, that is, it is independent of the
choices of oriented atlas and partition of unity.

The following proposition shows that the sign of an integral over M is reversed upon reversing
the orientation of M .

Proposition 4.1. Let ω be an n-form with compact support on an oriented n-manifold M . Let
−M be the same manifold but with the opposite orientation. Then∫

−M
ω = −

∫
M

ω.

The integration defined above for manifolds can be extended to oriented manifolds with boundary
in a similar way.
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5 Stokes’ theorem and Green’s theorem

Let M be an oriented n-manifold with boundary. The boundary ∂M is given the boundary
orientation. Let i : ∂M ↪→ M be the inclusion map. Let ω be an (n− 1)-form on M . We write∫
∂M

ω instead of
∫
∂M

i∗ω.

Theorem 5.1 (Stokes’ theorem). If ω is any smooth (n− 1)-form with compact support on the
oriented n-manifold M , ∫

M

dω =

∫
∂M

ω.

Considering the special case of R2 gives us an interesting result. Let D ⊂ R2 be some plane
region. Let M be D and ω be the 1-form Pdx+Qdy on D. Then∫

∂D

Pdx+Qdy =

∫
∂D

ω =

∫
D

∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy =

∫
D

(
∂D

∂x
− ∂P

∂y

)
dxdy.

This is the well-known Green’s theorem. Therefore, in R2, Stokes’ theorem reduces to Green’s
theorem. For completeness, we state the theorem as follows.

Theorem 5.2 (Green’s theorem). Let D ⊂ R2 be some plane region. Let P and Q be smooth
functions on D. Then ∫

∂D

Pdx+Qdy =

∫
D

(
∂D

∂x
− ∂P

∂y

)
dxdy.

The divergence theorem and the fundamental theorem of calculus may also be stated as special
cases of Stokes’ theorem.
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