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Cartesian Closed Categories

Ronald Huidrom

Abstract

Function spaces in the category Set can be generalized to exponential objects in

more general categories. This gives rise to cartesian closed categories in which any

morphism defined on a product of two objects can be naturally identified with a mor-

phism defined on one of the factors. These categories are particularly important in

mathematical logic and the theory of programming, in that their internal language is

the simply typed λ-calculus.

Introduction

Using the concept of finite products and exponential objects, one can define the notion of

a cartesian closed category. As formal systems, these categories have the same expressive

power as a typed λ-calculus. We shall assume the knowledge of some basic category theory,

particularly the notion of finite products.

In section 1, we define the concept of exponential objects in categories. They are general-

izations of function spaces from the category of sets. In section 2, we define cartesian closed

categories and look at some interesting examples. In section 3, we look at the applications

of cartesian closed categories in various areas, particularly in computer science.

1 Exponentials

In the category Set of sets, we use the notation CB to denote the set of all functions from

B to C. That is, CB := Set(B,C), the set of all morphisms from B to C in Set. Let

f : A × B → C be a morphism in Set. If we hold some a ∈ A fixed, we have a morphism

fa : B → C taking y ∈ B to f(a, y) ∈ C so that fa ∈ CB . Thus, we have a morphism

f̃ : A → CB which takes x ∈ A to fx ∈ CB . The morphism f̃ is uniquely determined by

the equation

f̃(x)(y) = fx(y) = f(x, y).

Conversely, for any f̃ : A → CB , there is a unique morphism f : A × B → C given by the

equation

f(x, y) = fx(y) = f̃(x)(y).

Thus, we have established an isomorphism of Hom-sets:

Set(A×B,C) ∼= Set(A,CB).
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The bijective correspondence between morphisms of the form f : A × B → C and those of

the form f̃ : A→ CB is mediated by a certain operation, which we will call the evaluation

map. In Set, we define the evaluation function

eval : CB ×B → C

which takes (f, y) to f(y). This hardly says anything more than the fact that we are

evaluating the map f : B → C at y ∈ B. However, written in this way, it is more convenient

to see that the evaluation map has the universal mapping property: given any set A and any

map f : A×B → C, there exists a unique map f̃ : A→ CB such that eval ◦ (f̃ × 1B) = f .

In other words, eval (f̃(a), b) = f(a, b).

The idea may be extended to any category having binary products. In Set, the function

space CB is an object having the complete information of all morphisms from B to C. In

a general category having binary products, we have an object CB conveying information of

morphisms from B to C in some way. Indeed, we may define

1.1 Definition. Let A be a category having binary products. Let B and C be two objects

of A. The exponential of B and C is an object CB and a morphism (called evaluation)

ε : CB ×B → C such that, for any object A and a morphism f : A×B → C there exists a

unique morphism f̃ : A→ CB such that ε ◦ (f̃ × 1B) = f .

We call f̃ the conjugate of f . If g : A → CB is a morphism, we define ḡ := ε ◦ (g × 1B) :

A × B → C. By the uniqueness clause of the definition, we have ˜̄g = g and for any

f : A × B → C, we have
¯̃
f = f . Thus, there is a one-to-one correspondence between

morphisms of the form f : A×B → C and those of the form f̃ : A→ CB . Indeed, we have

an isomorphism of Hom-sets:

A(A×B → C) ∼= A(A,CB).

2 Cartesian closed categories

2.1 Definition (cartesian closed category). A category is said to be cartesian closed if it

has all finite products and exponentials.

As we have seen above, Set is cartesian closed. Consider the category FinSet of finite sets.

Clearly, it has all finite products, which are just the cartesian products. Also, it has all the

exponentials, since given any two finite sets A and B, we have the finite function space BA

for |BA| = |B||A|.

Consider the category Set. Let β : B → C be a set map. We define βA : BA → CA

sending f : A→ B to β ◦ f : A→ C. It is easy to see that this assignment gives a functor

F : Set → Set. Indeed, we only need to check if F preserves composition and identity
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morphisms: for any α : C → D

(α ◦ β)A(f) = α ◦ β ◦ f
= α ◦ βA(f)

= αA ◦ βA(f),

so that (α ◦ β)A = αA ◦ βA. Also,

(1B)A(f) = 1B ◦ f = f = 1BA(f).

so that (1B)A = 1BA . This shows that F is indeed a functor. In fact, this is true in a more

general setting as stated (without proof) in the following proposition.

2.2 Proposition. Let A be a cartesian closed category. Then the exponentiation by a fixed

object A is an endofunctor (−)A : A → A.

2.3 Proposition. The category Pos of posets is cartesian closed.

Proof. In the category Pos of posets, the morphisms are the monotone functions f : P → Q.

That is, p ≤ p′ implies fp ≤ fp′. Let P and Q be two posets. The product poset P × Q
has pairs (p, q) as elements and is partially ordered by

(p, q) ≤ (p′, q′) iff p ≤ p′ and q ≤ q′.

It is easy to see that the projections π1 : P × Q → P and π2 : P × Q → Q are monotone.

Also, if f : X → P and g : X → Q are monotone, the pairing (f, g) : X → P × Q is also

monotone.

We define the exponential QP as follows

QP = {f : P → Q | f monotone}.

It is easy to see that QP is again a poset ordered pointwise. That is,

f ≤ g iff fp ≤ gp for all p ∈ P.

The evaluation map ε : QP × P → Q and the transposition f̃ : X → QP of some given

morphism f : X×P → Q are the usual ones of the underlying functions. It suffices to show

that these are monotone.

Suppose (f, p) ≤ (f ′, p′) in QP × P . We have

ε(f, p) = f(p) ≤ f(p′) ≤ f ′(p′) = ε(f ′, p′),

so that ε is monotone. Suppose f : X × P → Q is monotone and let x ≤ x′. It suffices

to show that f̃(x) ≤ f̃(x′) in QP , that is, f̃(x) ≤ f̃(x′)(p) for all p ∈ P . But then

f̃(x)(p) = f(x, p) ≤ f(x′, p) = f̃(x′)(p).
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The following are some other examples of cartesian closed categories.

1. The category Grph of graphs whose morphisms are homomorphisms of graphs is

cartesian closed.

2. Let A be a small category. The category Func(A,Set) whose objects are functors

and morphsims are natural transformations is cartesian closed.

3. The category Cat of small categories and functors is cartesian closed. Given two small

categories A and B, the exponential BA is the category whose objects are functors from

A to B and whose morphisms are natural transformations between them.

4. A functional programming language can be regarded as a category. If such a language

is cartesian closed, then for any types A and B, there is a type BA of functions from

A to B. Since that is a type, one can apply programs to data of that type. This is

the same as saying that functions are on the same level as other data, which is often

described by saying “functions are first class objects”.

5. A Heyting algebra is a poset with all finite infimums and supremums that is cartesian

closed as a category. A Heyting algebra is a generalization of a Boolean algebra.

Heyting algebras correspond to intuitionistic logic in the way that Boolean algebras

correspond to classical logic.

3 Applications

Lambda calculus (also λ-calculus) is a formal system in mathematical logic for expressing

computation based on function abstraction and application using variable binding and sub-

stitution. It can be used to simulate any Turing machine. Lambda calculus may be untyped

or typed. In typed lambda calculus, functions can be applied only if they are capable of

accepting the given input’s ”type” of data. A typed λ-calculus is a typed formalism that

uses the λ symbol to denote anonymous function abstraction. Typed λ-calculus is equiva-

lent to cartesian closed categories. The Curry–Howard–Lambek correspondence provides a

deep isomorphism between intuitionistic logic, simply-typed lambda calculus and cartesian

closed categories.

A topos (plural topoi) is a category that behaves like the category of sheaves of sets on

a topological space. It behaves much like the category of sets and possess a notion of

localization; they are a direct generalization of point-set topology. Topoi are cartesian

closed categories; they have been proposed as a general setting for mathematics, instead of

traditional set theory.

Function-level programming is a variable-free programming paradigm advocated by the com-

puter scientist John Backus. It bears some similarity to the internal language of cartesian

closed categories.
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CAML (orginally an acronym for Categorical Abstract Machine Learning) is a multi-paradigm,

general-purpose programming language which is a dialect of the ML programming language

family. It is more consciously modelled on cartesian closed categories.
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